函数知识点总结

时间:2024-08-21 11:23:45 知识点总结 我要投稿

函数知识点总结【热门】

  总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它可以给我们下一阶段的学习和工作生活做指导,不妨让我们认真地完成总结吧。那么总结要注意有什么内容呢?下面是小编收集整理的函数知识点总结,欢迎大家分享。

函数知识点总结【热门】

函数知识点总结1

  特别地,二次函数(以下称函数)y=ax+bx+c。

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax+bx+c=0。

  此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

  1.二次函数y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的图象形状相同,只是位置不同。当h>0时,y=a(x-h)的图象可由抛物线y=ax向右平行移动h个单位得到。

  当h<0时,则向xxx移动|h|个单位得到。

  当h>0,k>0时,将抛物线y=ax向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)+k的图象。

  当h>0,k<0时,将抛物线y=ax向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象。

  当h<0,k>0时,将抛物线向xxx移动|h|个单位,再向上移动k个单位可得到y=a(x-h)+k的图象。

  当h<0,k<0时,将抛物线向xxx移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象。

  因此,研究抛物线y=ax+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便。

  2.抛物线y=ax+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b]/4a)。

  3.抛物线y=ax+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的`增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小。

  4.抛物线y=ax+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c)。

  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的两根.这两点间的距离AB=|x-x|。

  当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。

  5.抛物线y=ax+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b)/4a。

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax+bx+c(a≠0)。

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)+k(a≠0)。

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a≠0)。

函数知识点总结2

  一:函数及其表示

  知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等

  1. 函数与映射的区别:

  2. 求函数定义域

  常见的用解析式表示的函数f(x)的定义域可以归纳如下:

  ①当f(x)为整式时,函数的定义域为R.

  ②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。

  ③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。

  ④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。

  ⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。

  ⑥复合函数的定义域是复合的`各基本的函数定义域的交集。

  ⑦对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约。

  3. 求函数值域

  (1)、观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域;

  (2)、配方法;如果一个函数是二次函数或者经过换元可以写成二次函数的形式,那么将这个函数的右边配方,通过自变量的范围可以求出该函数的值域;

  (3)、判别式法:

  (4)、数形结合法;通过观察函数的图象,运用数形结合的方法得到函数的值域;

  (5)、换元法;以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域;

  (6)、利用函数的单调性;如果函数在给出的定义域区间上是严格单调的,那么就可以利用端点的函数值来求出值域;

  (7)、利用基本不等式:对于一些特殊的分式函数、高于二次的函数可以利用重要不等式求出函数的值域;

  (8)、最值法:对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域;

  (9)、反函数法:如果函数在其定义域内存在反函数,那么求函数的值域可以转化为求反函数的定义域。

函数知识点总结3

  余割函数

  对于任意一个实数x,都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的'余割值cscx与它对应,按照这个对应法则建立的函数称为余割函数。

  记作f(x)=cscx

  f(x)=cscx=1/sinx

  1、定义域:{x|x≠kπ,k∈Z}

  2、值域:{y|y≤-1或y≥1}

  3、奇偶性:奇函数

  4、周期性:最小正周期为2π

  5、图像:

  图像渐近线为:x=kπ ,k∈Z

  其实有一点需要注意,就是余割函数与正弦函数互为倒数。

函数知识点总结4

  1. 函数的奇偶性

  (1)若f(x)是偶函数,那么f(x)=f(-x) ;

  (2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

  2. 复合函数的有关问题

  (1)复合函数定义域求法:若已知 的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的`单调性由“同增异减”判定;

  3.函数图像(或方程曲线的对称性)

  (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

  (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;

  4.函数的周期性

  (1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a0)恒成立,则y=f(x)是周期为2a的周期函数;

  (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

  (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

  (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;

  (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;

  (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;

  5.

  方程k=f(x)有解 k∈D(D为f(x)的值域);

  6.

  a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

  7.

  (1) (a0,a≠1,b0,n∈R+);

  (2) l og a N= ( a0,a≠1,b0,b≠1);

  (3) l og a b的符号由口诀“同正异负”记忆;

  (4) a log a N= N ( a0,a≠1,N

  8. 判断对应是否为映射时,抓住两点:

  (1)A中元素必须都有象且唯一;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  10.对于反函数,应掌握以下一些结论:

  (1)定义域上的单调函数必有反函数;

  (2)奇函数的反函数也是奇函数;

  (3)定义域为非单元素集的偶函数不存在反函数;

  (4)周期函数不存在反函数;

  (5)互为反函数的两个函数具有相同的单调性;

  (5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

  11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

  12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

  13. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;

函数知识点总结5

  一、函数

  (1)定义:设在某变化过程中有两个变量x、y,对于x的每一个值,y都有唯一的值与之对应,那么就说x是自变量,y是因变量,此时,也称y是x的函数。

  (2)本质:一一对应关系或多一对应关系。

  有序实数对平面直角坐标系上的点

  (3)表示方法:解析法、列表法、图象法。

  (4)自变量取值范围:

  对于实际问题,自变量取值必须使实际问题有意义;

  对于纯数学问题,自变量取值必须保证函数关系式有意义:

  ①分式中,分母≠0;

  ②二次根式中,被开方数≥0;

  ③整式中,自变量取全体实数;

  ④混合运算式中,自变量取各解集的公共部份。

  二、正比例函数与反比例函数

  两函数的异同点

  三、一次函数(图象为直线)

  (1)定义式:y=kx+b(k、b为常数,k≠0);自变量取全体实数。

  (2)性质:

  ①k>0,过第一、三象限,y随x的增大而增大;

  k<0,过第二、四象限,y随x的增大而减小。

  ②b=0,图象过(0,0);

  b>0,图象与y轴的`交点(0,b)在x轴上方;

  b<0,图象与y轴的交点(0,b)在x轴下方。

  四、二次函数(图象为抛物线)

  (1)自变量取全体实数

  一般式:y=ax2+bx+c(a、b、c为常数,a≠0),其中(0,c)为抛物线与y轴的交点;

  顶点式:y=a(x—h)2+k(a、h、k为常数,a≠0),其中(h,k)为抛物线顶点;

  h=—,k=零点式:y=a(x—x1)(x—x2)(a、x1、x2为常数,a≠0)其中(x1,0)、(x2,0)为抛物线与x轴的交点。x1、x2 =(b 2 —4ac ≥0)

  (2)性质:

  ①对称轴:x=—或x=h;

  ②顶点:(—,)或(h,k);

  ③最值:当x=—时,y有最大(小)值,为或当x=h时,y有最大(小)值,为k;

函数知识点总结6

  (一)函数

  1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。

  2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。一个X对应两个Y值是错误的x判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应;

  3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

  4、确定函数定义域的方法:

  (1)关系式为整式时,函数定义域为全体实数;

  (2)关系式含有分式时,分式的分母不等于零;

  (3)关系式含有二次根式时,被开放方数大于等于零;

  (4)关系式中含有指数为零的式子时,底数不等于零;

  (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

  5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式

  6、函数的图像(函数图像上的点一定符合函数表达式,符合函数表达式的点一定在函数图像上)

  一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象;

  运用:求解析式中的参数、求函数解释式;

  7、描点法画函数图形的一般步骤

  第一步:列表(表中给出一些自变量的值及其对应的函数值);函数表达式为y=3X-2-1-20xx-6-3-6036

  第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);

  第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

  8、函数的表示方法

  列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

  解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

  图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

  (二)一次函数1、一次函数的定义

  一般地,形如ykxb(k,b是常数(其中k与b的形式较为灵活,但只要抓住函数基本形式,准确找到k与b,根据题意求的常数的取值范围),且k0)的'函数,叫做一次函数,其中x是自变量。当b0时,一次函数ykx,又叫做正比例函数。

  ⑴一次函数的解析式的形式是ykxb,要判断一个函数是否是一次函数,就是判断是否能化成以上形式;

  ⑵当b0,k0时,ykx仍是一次函数;

  ⑶当b0,k0时,它不是一次函数;

  ⑷正比例函数是一次函数的特例,一次函数包括正比例函数;

  2、正比例函数及性质

  一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx(k不为零)①k不为零②x指数为1③b取零

  当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k0时,图像经过一、三象限;k0,y随x的增大而增大;k0时,向上平移;当b0,y随x的增大而增大();k4、一次函数y=kx+b的图象的画法.

  在实际做题中只需要俩点就可以确定函数图像,一般我们令X=0求出阿Y的值再令Y=0求出X的值.如图

  y=kx+b(0,b)解析:(两点确定一条直线,这两点我们一般确定在坐标轴上,因为X轴上所有坐标点的纵坐标为0即(x,0)Y轴上所有点的

  (-b/k,0)横坐标为0即(0,y)这样作图既快又准确

  5、正比例函数与一次函数之间的关系

  一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b0时,直线经过一、三象限;k0,y随x的增大而增大;(从左向右上升)k0时,将直线y=kx的图象向上平移b个单位;b。

函数知识点总结7

  高一数学第三章函数的应用知识点总结

  一、方程的根与函数的零点

  1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。

  2、函数零点的意义:函数yf(x)的零点就是方程f(x)0实数根,亦即函数

  yf(x)的图象与x轴交点的横坐标。

  即:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.

  3、函数零点的求法:

  1(代数法)求方程f(x)0的实数根;○

  2(几何法)对于不能用求根公式的方程,可以将它与函数yf(x)的图象○

  联系起来,并利用函数的性质找出零点.

  零点存在性定理:如果函数y=f(x)在区间〔a,b〕上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。先判定函数单调性,然后证明是否有f(a)f(b)第三章函数的应用习题

  一、选择题

  1.下列函数有2个零点的是()

  222y3x10y4x5x10yx3x5y4x4x1A、B、C、D、22.用二分法计算3x3x80在x(1,2)内的根的过程中得:f(1)0,f(1.5)0,

  f(1.25)0,则方程的根落在区间()

  A、(1,1.5)B、(1.5,2)C、(1,1.25)D、(1.25,1.5)

  3.若方程axxa0有两个解,则实数a的取值范围是A、(1,)B、(0,1)C、(0,)D、

  4.函数f(x)=lnx-2x的零点所在的大致区间是()A.(1,2)B.2,eC.e,3D.e,

  5.已知方程x3x10仅有一个正零点,则此零点所在的区间是()

  A.(3,4)B.(2,3)C.(1,2)D.(0,1)

  6.函数f(x)lnx2x6的零点落在区间()A.(2,2.25)B.(2.25,2.5)C.(2.5,2.75)D.(2.75,3)

  7.已知函数

  fx的图象是不间断的,并有如下的对应值表:x1234567fx8735548那么函数在区间(1,6)上的零点至少有()个A.5B.4C.3D.28.方程2x1x5的解所在的区间是A(0,1)B(1,2)C(2,3)D(3,4)

  9.方程4x35x60的根所在的区间为A、(3,2)B、(2,1)C、(1,0)D、(0,1)

  10.已知f(x)2x22x,则在下列区间中,f(x)0有实数解的是()

  )

  ()

  ()

  ((A)(-3,-2)(B)(-1,0)(C)(2,3)(D)(4,5)11.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为()

  xexx+2-10.37101212.72327.394320.095A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12、方程

  x12x根的个数为()

  A、0B、1C、2D、3二、填空题

  13.下列函数:1)y=lgx;2)y2;3)y=x2;4)y=|x|-1;其中有2个零点的函数的序号是。

  x214.若方程3x2的`实根在区间m,n内,且m,nZ,nm1,

  x则mn.

  222f(x)(x1)(x2)(x2x3)的零点是15、函数(必须写全所有的零点)。

  扩展阅读:高中数学必修一第三章函数的应用知识点总结

  第三章函数的应用

  一、方程的根与函数的零点

  1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。

  2、函数零点的意义:函数yf(x)的零点就是方程f(x)0实数根,亦即函数

  yf(x)的图象与x轴交点的横坐标。

  即:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.

  3、函数零点的求法:

  1(代数法)求方程f(x)0的实数根;○

  2(几何法)对于不能用求根公式的方程,可以将它与函数yf(x)的图象联系起来,○

  并利用函数的性质找出零点.

  4、基本初等函数的零点:

  ①正比例函数ykx(k0)仅有一个零点。

  k(k0)没有零点。x③一次函数ykxb(k0)仅有一个零点。

  ②反比例函数y④二次函数yax2bxc(a0).

  (1)△>0,方程ax2bxc0(a0)有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.

  (2)△=0,方程ax2bxc0(a0)有两相等实根,二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.

  (3)△<0,方程ax2bxc0(a0)无实根,二次函数的图象与x轴无交点,二次函数无零点.

  ⑤指数函数ya(a0,且a1)没有零点。⑥对数函数ylogax(a0,且a1)仅有一个零点1.

  ⑦幂函数yx,当n0时,仅有一个零点0,当n0时,没有零点。

  5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把fx转化成,这另fx0,再把复杂的函数拆分成两个我们常见的函数y1,y2(基本初等函数)个函数图像的交点个数就是函数fx零点的个数。

  6、选择题判断区间a,b上是否含有零点,只需满足fafb0。Eg:试判断方程xx2x10在区间[0,2]内是否有实数解?并说明理由。

  1

  42x7、确定零点在某区间a,b个数是唯一的条件是:①fx在区间上连续,且fafb0②在区间a,b上单调。Eg:求函数f(x)2xlg(x1)2的零点个数。

  8、函数零点的性质:

  从“数”的角度看:即是使f(x)0的实数;

  从“形”的角度看:即是函数f(x)的图象与x轴交点的横坐标;

  若函数f(x)的图象在xx0处与x轴相切,则零点x0通常称为不变号零点;若函数f(x)的图象在xx0处与x轴相交,则零点x0通常称为变号零点.

  Eg:一元二次方程根的分布讨论

  一元二次方程根的分布的基本类型

  2axbxc0(a0)的两实根为x1,x2,且x1x2.设一元二次方程

  k为常数,则一元二次方程根的k分布(即x1,x2相对于k的位置)或根在区间上的

  分布主要有以下基本类型:

  表一:(两根与0的大小比较)

  分布情况两个负根即两根都小于0两个正根即两根都大于0一正根一负根即一个根小于0,一个大于0x10,x20x10,x20x10x2a0)大致图象(得出的结论0b02af000b02af00f00

  大致图象(a0)得出的结论0b02af000b02aaf000b02af000b02aaf00f00(不综讨合论结a论)

  af00表二:(两根与k的大小比较)

  分布情况两根都小于k即两根都大于k即一个根小于k,一个大于k即x1k,x2kx1k,x2kx1kx2a0)大致图象(kkk得出的结论0bk2afk00bk2afk0fk0大致图象(a0)得出的结论0bk2afk00bk2aafk00bk2afk00bk2aafk0fk0(不综讨合论结a论)a0)afk0分布情况大致图象(得出的结论表三:(根在区间上的分布)

  两根都在m,n内两根有且仅有一根在m,n一根在m,n内,另一根在p,q内(有两种情况,只画了一种)内,mnpq0fm0fn0bmn2afmfn0fm0fn0fmfn0fp0fq0fpfq0或

  大致图象(a0)得出的结论0fm0fn0bmn2a综合结论fmfn0fm0fn0fmfn0fp0fq0fpfq0或fmfn0fpfq0(a不)讨论

  fmfn0Eg:(1)关于x的方程x22(m3)x2m140有两个实根,且一个大于1,一个小于1,求m的取值范围?

  (2)关于x的方程x2(m3)x2m140有两实根在[0,4]内,求m的取值范围?

  2(3)关于x的方程mx2(m3)x2m140有两个实根,且一个大于4,一个小于4,求m的取值范围?

  9、二分法的定义

  对于在区间[a,b]上连续不断,且满足f(a)f(b)0的函数

  yf(x),通过不断地把函数f(x)的零点所在的区间一分为二,

  使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.

  10、给定精确度ε,用二分法求函数f(x)零点近似值的步骤:(1)确定区间[a,b],验证f(a)f(b)0,给定精度;(2)求区间(a,b)的中点x1;(3)计算f(x1):

  ①若f(x1)=0,则x1就是函数的零点;

  ②若f(a)f(x1)14、根据散点图设想比较接近的可能的函数模型:一次函数模型:f(x)kxb(k0);二次函数模型:g(x)ax2bxc(a0);幂函数模型:h(x)axb(a0);

  指数函数模型:l(x)abxc(a0,b>0,b1)

  利用待定系数法求出各解析式,并对各模型进行分析评价,选出合适的函数模型

函数知识点总结8

  课题

  3.5正比例函数、反比例函数、一次函数和二次函数

  教学目标

  1、掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质2、会用待定系数法确定函数的解析式

  教学重点

  掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质

  教学难点

  掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质

  教学方法

  讲练结合法

  教学过程

  (I)知识要点(见下表:)

  第三章第29页函数名称解析式图像正比例函数ykx(k0)0x反比例函数一次函数ykxb(k0)0x二次函数yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0图像过点(0,0)及(1,k)的直线双曲线,x轴、y轴是它的渐近线与直线ykx平行且过点(0,b)的`直线抛物线定义域RxxR且xoyyR且yoRR4acb2a0时,y,4aR值域R4acb2a0时,y,4aba0时,在-,上为增2a函数,在,-单调性k0时,在,0,k0时为增函数0,上为减函数k0时,为增函数b上为减函数2ak0时为减函数k0时,在,0,k0时,为减函数0,上为增函数ba0时,在-,上为减2a函数,在,-b上为增函数2a奇偶性奇函数奇函数b=0时奇函数b=0时偶函数a0且x-ymin最值无无无b时,2a24acb4ab时,2a24acb4aa0且x-ymax

  第三章第30页b24acb2注:二次函数yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2对称轴x,顶点(,)

  2a2a4a2抛物线与x轴交点坐标(m,0),(n,0)(II)例题讲解

  例1、求满足下列条件的二次函数的解析式:(1)抛物线过点A(1,1),B(2,2),C(4,2)(2)抛物线的顶点为P(1,5)且过点Q(3,3)

  (3)抛物线对称轴是x2,它在x轴上截出的线段AB长为2且抛物线过点(1,7)。2,

  解:(1)设yax2bxc(a0),将A、B、C三点坐标分别代入,可得方程组为

  abc1a1解得b4yx24x24a2bc216a4bc2c2(2)设二次函数为ya(x1)25,将Q点坐标代入,即a(31)253,得

  a2,故y2(x1)252x24x3

  (3)∵抛物线对称轴为x2;

  ∴抛物线与x轴的两个交点A、B应关于x2对称;∴由题设条件可得两个交点坐标分别为A(2∴可设函数解析式为:ya(x2代入方程可得a1

  ∴所求二次函数为yx24x2,

  2,0)、B(222,0)

  2)(x22)a(x2)22a,将(1,7)

  5),例2:二次函数的图像过点(0,8),(1,(4,0)

  (1)求函数图像的顶点坐标、对称轴、最值及单调区间(2)当x取何值时,①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

  例3:求函数f(x)x2x1,x[1,1]的最值及相应的x值

  113x1(x)2,知函数的图像开口向上,对称轴为x

  224111]上是增函数。∴依题设条件可得f(x)在[1,]上是减函数,在[,22131]时,函数取得最小值,且ymin∴当x[1,24131又∵11

函数知识点总结9

  本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的'综合。所以理解了前面的几个知识点,函数的图象就迎刃而解了。

  一、函数的单调性

  1、函数单调性的定义

  2、函数单调性的判断和证明:

  (1)定义法

  (2)复合函数分析法

  (3)导数证明法

  (4)图象法

  二、函数的奇偶性和周期性

  1、函数的奇偶性和周期性的定义

  2、函数的奇偶性的判定和证明方法

  3、函数的周期性的判定方法

  三、函数的图象

  1、函数图象的作法

  (1)描点法

  (2)图象变换法

  2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

  常见考法

  本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。选择题、填空题和解答题都有,并且题目难度较大。在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。多考查函数的单调性、最值和图象等。

  误区提醒

  1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。

  2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。

  3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。

  4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。

  5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。

函数知识点总结10

  1二次函数的定义

  一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函数.

  注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;

  (2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),自变量x的取值范围是全体实数;

  (3)当b=c=0时,二次函数y=ax2是最简单的二次函数;

  (4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数.

  2二次函数解析式的几种形式

  (1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0).

  (2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).

  (3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的.交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.

  说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点

  3二次函数y=ax2+c的图象与性质

  (1)抛物线y=ax2+c的形状由a决定,位置由c决定.

  (2)二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y轴.

  当a>0时,图象的开口向上,有最低点(即顶点),当x=0时,y最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大.

  当a<0时,图象的开口向下,有最高点(即顶点),当x=0时,y最大值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小.

  (3)抛物线y=ax2+c与y=ax2的关系.

  抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动.

函数知识点总结11

  一次函数

  一、定义与定义式:

  自变量x和因变量y有如下关系:

  y=kx+b

  则此时称y是x的一次函数。

  特别地,当b=0时,y是x的正比例函数。

  即:y=kx (k为常数,k0)

  二、一次函数的性质:

  1、y的变化值与对应的x的变化值成正比例,比值为k

  即:y=kx+b (k为任意不为零的实数b取任何实数)

  2、当x=0时,b为函数在y轴上的截距。

  三、一次函数的图像及性质:

  1、作法与图形:通过如下3个步骤

  (1)列表;

  (2)描点;

  (3)连线,可以作出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

  2、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)正比例函数的图像总是过原点。

  3、k,b与函数图像所在象限:

  当k0时,直线必通过一、三象限,y随x的增大而增大;

  当k0时,直线必通过二、四象限,y随x的增大而减小。

  当b0时,直线必通过一、二象限;

  当b=0时,直线通过原点

  当b0时,直线必通过三、四象限。

  特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。

  四、确定一次函数的表达式:

  已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的.表达式。

  (1)设一次函数的表达式(也叫解析式)为y=kx+b。

  (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b ①和y2=kx2+b ②

  (3)解这个二元一次方程,得到k,b的值。

  (4)最后得到一次函数的表达式。

  五、一次函数在生活中的应用:

  1、当时间t一定,距离s是速度v的一次函数。s=vt。

  2、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S—ft。

  六、常用公式:(不全,希望有人补充)

  1、求函数图像的k值:(y1—y2)/(x1—x2)

  2、求与x轴平行线段的中点:|x1—x2|/2

  3、求与y轴平行线段的中点:|y1—y2|/2

  4、求任意线段的长:(x1—x2)^2+(y1—y2)^2 (注:根号下(x1—x2)与(y1—y2)的平方和)

  二次函数

  I、定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:

  y=ax^2+bx+c

  (a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大、)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II、二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a0)

  顶点式:y=a(x—h)^2+k [抛物线的顶点P(h,k)]

  交点式:y=a(x—x)(x—x ) [仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a

  III、二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,

  可以看出,二次函数的图像是一条抛物线。

  IV、抛物线的性质

  1、抛物线是轴对称图形。对称轴为直线

  x= —b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2、抛物线有一个顶点P,坐标为

  P( —b/2a,(4ac—b^2)/4a )

  当—b/2a=0时,P在y轴上;当= b^2—4ac=0时,P在x轴上。

  3、二次项系数a决定抛物线的开口方向和大小。

  当a0时,抛物线向上开口;当a0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4、一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab0),对称轴在y轴左;

  当a与b异号时(即ab0),对称轴在y轴右。

  5、常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6、抛物线与x轴交点个数

  = b^2—4ac0时,抛物线与x轴有2个交点。

  = b^2—4ac=0时,抛物线与x轴有1个交点。

  = b^2—4ac0时,抛物线与x轴没有交点。X的取值是虚数(x= —bb^2—4ac的值的相反数,乘上虚数i,整个式子除以2a)

  V、二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax^2+bx+c,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),

  即ax^2+bx+c=0

  此时,函数图像与x轴有无交点即方程有无实数根。

  函数与x轴交点的横坐标即为方程的根。

  1、二次函数y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

  解析式顶点坐标对称轴

  y=ax^2(0,0) x=0

  y=a(x—h)^2(h,0) x=h

  y=a(x—h)^2+k(h,k) x=h

  y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a

  当h0时,y=a(x—h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

  当h0时,则向左平行移动|h|个单位得到、

  当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x—h)^2+k的图象;

  当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x—h)^2+k的图象;

  当h0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x—h)^2+k的图象;

  当h0,k0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x—h)^2+k的图象;

  因此,研究抛物线y=ax^2+bx+c(a0)的图象,通过配方,将一般式化为y=a(x—h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了、这给画图象提供了方便、

  2、抛物线y=ax^2+bx+c(a0)的图象:当a0时,开口向上,当a0时开口向下,对称轴是直线x=—b/2a,顶点坐标是(—b/2a,[4ac—b^2]/4a)、

  3、抛物线y=ax^2+bx+c(a0),若a0,当x —b/2a时,y随x的增大而减小;当x —b/2a时,y随x的增大而增大、若a0,当x —b/2a时,y随x的增大而增大;当x —b/2a时,y随x的增大而减小、

  4、抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2—4ac0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=

  (a0)的两根、这两点间的距离AB=|x—x|

  当△=0、图象与x轴只有一个交点;

  当△0、图象与x轴没有交点、当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0、

  5、抛物线y=ax^2+bx+c的最值:如果a0(a0),则当x= —b/2a时,y最小(大)值=(4ac—b^2)/4a、

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值、

  6、用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

  y=ax^2+bx+c(a0)、

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x—h)^2+k(a0)、

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x—x)(x—x)(a0)、

  7、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现、

  反比例函数

  形如y=k/x(k为常数且k0)的函数,叫做反比例函数。

  自变量x的取值范围是不等于0的一切实数。

  反比例函数图像性质:

  反比例函数的图像为双曲线。

  由于反比例函数属于奇函数,有f(—x)=—f(x),图像关于原点对称。

  另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

  如图,上面给出了k分别为正和负(2和—2)时的函数图像。

  当K0时,反比例函数图像经过一,三象限,是减函数

  当K0时,反比例函数图像经过二,四象限,是增函数

  反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

  知识点:

  1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。

  2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(xm)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

函数知识点总结12

  总体上必须清楚的:

  1)程序结构是三种:顺序结构、选择结构(分支结构)、循环结构。

  2)读程序都要从main()入口,然后从最上面顺序往下读(碰到循环做循环,碰到选择做选择),有且只有一个main函数。

  3)计算机的数据在电脑中保存是以二进制的形式.数据存放的位置就是他的地址.

  4)bit是位是指为0或者1。 byte是指字节,一个字节=八个位.

  概念常考到的:

  1、编译预处理不是C语言的一部分,不占运行时间,不要加分号。C语言编译的程序称为源程序,它以ASCII数值存放在文本文件中。

  2、define PI 3.1415926;这个写法是错误的,一定不能出现分号。 -

  3、每个C语言程序中main函数是有且只有一个。

  4、在函数中不可以再定义函数。

  5、算法:可以没有输入,但是一定要有输出。

  6、break可用于循环结构和switch语句。

  7、逗号运算符的级别最低,赋值的级别倒数第二。

  第一章C语言的基础知识

  第一节、对C语言的基础认识

  1、C语言编写的程序称为源程序,又称为编译单位。

  2、C语言书写格式是自由的,每行可以写多个语句,可以写多行。

  3、一个C语言程序有且只有一个main函数,是程序运行的起点。

  第二节、熟悉vc++

  1、VC是软件,用来运行写的C语言程序。

  2、每个C语言程序写完后,都是先编译,后链接,最后运行。(.c—.obj—.exe)这个过程中注意.c和.obj文件时无法运行的,只有.exe文件才可以运行。(常考!)

  第三节、标识符

  1、标识符(必考内容):

  合法的要求是由字母,数字,下划线组成。有其它元素就错了。

  并且第一个必须为字母或则是下划线。第一个为数字就错了

  2、标识符分为关键字、预定义标识符、用户标识符。

  关键字:不可以作为用户标识符号。main define scanf printf都不是关键字。迷惑你的地方If是可以做为用户标识符。因为If中的第一个字母大写了,所以不是关键字。

  预定义标识符:背诵define scanf printf include。记住预定义标识符可以做为用户标识符。

  用户标识符:基本上每年都考,详细请见书上习题。

  第四节:进制的转换

  十进制转换成二进制、八进制、十六进制。

  二进制、八进制、十六进制转换成十进制。

  第五节:整数与实数

  1)C语言只有八、十、十六进制,没有二进制。但是运行时候,所有的进制都要转换成二进制来进行处理。(考过两次)

  a、C语言中的八进制规定要以0开头。018的数值是非法的,八进制是没有8的,逢8进1。

  b、C语言中的十六进制规定要以0x开头。

  2)小数的合法写法:C语言小数点两边有一个是零的话,可以不用写。

  1.0在C语言中可写成1.

  0.1在C语言中可以写成.1。

  3)实型数据的合法形式:

  a、2.333e-1就是合法的,且数据是2.333×10-1。

  b、考试口诀:e前e后必有数,e后必为整数。请结合书上的例子。

  4)整型一般是4个字节,字符型是1个字节,双精度一般是8个字节:

  long int x;表示x是长整型。

  unsigned int x;表示x是无符号整型。

  第六、七节:算术表达式和赋值表达式

  核心:表达式一定有数值!

  1、算术表达式:+,-,*,/,%

  考试一定要注意:“/”两边都是整型的话,结果就是一个整型。 3/2的结果就是1.

  “/”如果有一边是小数,那么结果就是小数。 3/2.0的结果就是0.5

  “%”符号请一定要注意是余数,考试最容易算成了除号。)%符号两边要求是整数。不是整数就错了。[注意!!!]

  2、赋值表达式:表达式数值是最左边的数值,a=b=5;该表达式为5,常量不可以赋值。

  1、int x=y=10:错啦,定义时,不可以连续赋值。

  2、int x,y;

  x=y=10;对滴,定义完成后,可以连续赋值。

  3、赋值的左边只能是一个变量。

  4、int x=7.7;对滴,x就是7

  5、float y=7;对滴,x就是7.0

  3、复合的赋值表达式:

  int a=2;

  a*=2+3;运行完成后,a的值是12。

  一定要注意,首先要在2+3的上面打上括号。变成(2+3)再运算。

  4、自加表达式:

  自加、自减表达式:假设a=5,++a(是为6),a++(为5);

  运行的机理:++a是先把变量的数值加上1,然后把得到的数值放到变量a中,然后再用这个++a表达式的数值为6,而a++是先用该表达式的数值为5,然后再把a的数值加上1为6,

  再放到变量a中。进行了++a和a++后在下面的程序中再用到a的话都是变量a中的6了。

  考试口诀:++在前先加后用,++在后先用后加。

  5、逗号表达式:

  优先级别最低。表达式的'数值逗号最右边的那个表达式的数值。

  (2,3,4)的表达式的数值就是4。

  z=(2,3,4)(整个是赋值表达式)这个时候z的值为4。(有点难度哦!)

  z= 2,3,4(整个是逗号表达式)这个时候z的值为2。

  补充:

  1、空语句不可以随意执行,会导致逻辑错误。

  2、注释是最近几年考试的重点,注释不是C语言,不占运行时间,没有分号。不可以嵌套!

  3、强制类型转换:

  一定是(int)a不是int(a),注意类型上一定有括号的。

  注意(int)(a+b)和(int)a+b的区别。前是把a+b转型,后是把a转型再加b。

  4、三种取整丢小数的情况:

  1、int a =1.6;

  2、(int)a;

  3、1/2;3/2;

  第八节、字符

  1)字符数据的合法形式::

  ‘1’是字符占一个字节,”1”是字符串占两个字节(含有一个结束符号)。

  ‘0’的ASCII数值表示为48,’a’的ASCII数值是97,’A’的ASCII数值是65。

  一般考试表示单个字符错误的形式:’65’ “1”

  字符是可以进行算术运算的,记住:‘0’-0=48

  大写字母和小写字母转换的方法:‘A’+32=’a’相互之间一般是相差32。

  2)转义字符:

  转义字符分为一般转义字符、八进制转义字符、十六进制转义字符。

  一般转义字符:背诵/0、、 ’、 ”、 。

  八进制转义字符:‘141’是合法的,前导的0是不能写的。

  十六进制转义字符:’x6d’才是合法的,前导的0不能写,并且x是小写。

  3、字符型和整数是近亲:两个具有很大的相似之处

  char a = 65 ;

  printf(“%c”, a);得到的输出结果:a

  printf(“%d”, a);得到的输出结果:65

  第九节、位运算

  1)位运算的考查:会有一到二题考试题目。

  总的处理方法:几乎所有的位运算的题目都要按这个流程来处理(先把十进制变成二进制再变成十进制)。

  例1:char a = 6, b;

  b = a<<2;这种题目的计算是先要把a的十进制6化成二进制,再做位运算。

  例2:一定要记住,异或的位运算符号” ^ ”。0异或1得到1。

  0异或0得到0。两个女的生不出来。

  考试记忆方法:一男(1)一女(0)才可以生个小孩(1)。

  例3:在没有舍去数据的时候,<<左移一位表示乘以2;>>右移一位表示除以2。

函数知识点总结13

  三角和的公式

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  倍角公式

  tan2A = 2tanA/(1-tan2 A)

  Sin2A=2SinA?CosA

  Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

  三倍角公式

  sin3A = 3sinA-4(sinA)3;

  cos3A = 4(cosA)3 -3cosA

  tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

  三角函数特殊值

  α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

  α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

  a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

  α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

  α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

  α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

  α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

  α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

  α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

  α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

  α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  三角函数记忆顺口溜

  1三角函数记忆口诀

  “奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的.变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。

  以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。

  2符号判断口诀

  全,S,T,C,正。这五个字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。

  也可以这样理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是对应象限三角函数为正值的名称。口诀中未提及的都是负值。

  “ASTC”反Z。意即为“all(全部)”、“sin”、“tan”、“cos”按照将字母Z反过来写所占的象限对应的三角函数为正值。

  3三角函数顺口溜

  三角函数是函数,象限符号坐标注。函数图像单位圆,周期奇偶增减现。

  同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

  中心记上数字一,连结顶点三角形。向下三角平方和,倒数关系是对角,

  顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,

  变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

  将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

  余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

  计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

  逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

  万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

  一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范;

  三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

  利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。

函数知识点总结14

  ∴当x1时函数取得最大值,且ymax(1)2(1)13例4、已知函数f(x)x22(a1)x2

  4],求实数a的取值(1)若函数f(x)的递减区间是(,4]上是减函数,求实数a的取值范围(2)若函数f(x)在区间(,分析:二次函数的单调区间是由其开口方向及对称轴决定的,要分清函数在区间A上是单调函数及单调区间是A的区别与联系

  解:(1)f(x)的对称轴是x可得函数图像开口向上

  2(a1)21a,且二次项系数为1>0

  1a]∴f(x)的单调减区间为(,∴依题设条件可得1a4,解得a3

  4]上是减函数(2)∵f(x)在区间(,4]是递减区间(,1a]的子区间∴(,∴1a4,解得a3

  例5、函数f(x)x2bx2,满足:f(3x)f(3x)

  (1)求方程f(x)0的两根x1,x2的和(2)比较f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函数图像的对称轴为x(3x)(3x)23

  b3可得b62f(x)x26x2(x3)211

  而f(x)的`图像与x轴交点(x1,0)、(x2,0)关于对称轴x3对称

  x1x223,可得x1x26

  第三章第32页由二次项系数为1>0,可知抛物线开口向上又134,132,431

  ∴依二次函数的对称性及单调性可f(4)f(1)f(1)(III)课后作业练习六

  (Ⅳ)教学后记:

  第三章第33页

  扩展阅读:初中数学函数知识点归纳

  学大教育

  初中数学函数板块的知识点总结与归类学习方法

  初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,掌握了函数的基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就读于中考中数学成功了一大半,数学成绩自然上高峰,同时,函数的思想是学好其他理科类学科的基础。初中数学从性质上分,可以分为:一次函数、反比例函数、二次函数和锐角三角函数,下面介绍各类函数的定义、基本性质、函数图象及函数应用思维方式方法。

  一、一次函数

  1.定义:在定义中应注意的问题y=kx+b中,k、b为常数,且k≠0,x的指数一定为1。2.图象及其性质(1)形状、直线

函数知识点总结15

  教学目标:

  (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

  教学重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  教学难点:求出函数的自变量的取值范围。

  教学过程:

  一、问题引新

  1.设矩形花圃的垂直于墙(墙长18)的`一边AB的长为_m,先取_的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

  AB长_(m) 1 2 3 4 5 6 7 8 9

  BC长(m) 12

  面积y(m2) 48

  2._的值是否可以任意取?有限定范围吗?

  3.我们发现,当AB的长(_)确定后,矩形的面积(y)也随之确定,y是_的函数,试写出这个函数的关系式,教师可提出问题,(1)当AB=_m时,BC长等于多少m?(2)面积y等于多少? y=_(20-2_)

  二、提出问题,解决问题

  1、引导学生看书第二页问题一、二

  2、观察概括

  y=6_2 d= n /2 (n-3) y= 20 (1-_)2

  以上函数关系式有什么共同特点? (都是含有二次项)

  3、二次函数定义:形如y=a_2+b_+c(a、b、、c是常数,a≠0)的函数叫做_的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

  4、课堂练习

  (1) (口答)下列函数中,哪些是二次函数?

  (1)y=5_+1 (2)y=4_2-1

  (3)y=2_3-3_2 (4)y=5_4-3_+1

  (2).P3练习第1,2题。

  五、小结叙述二次函数的定义.

  第二课时:26.1二次函数(2)

  教学目标:

  1、使学生会用描点法画出y=a_2的图象,理解抛物线的有关概念。

  2、使学生经历、探索二次函数y=a_2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯。

  教学重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=a_2的图象

  教学难点:用描点法画出二次函数y=a_2的图象以及探索二次函数性质。

【函数知识点总结】相关文章:

函数知识点总结06-23

函数知识点总结02-10

函数知识点03-01

[精选]函数知识点03-01

初二函数知识点总结01-13

关于高中函数的知识点总结03-30

初中数学函数知识点总结04-08

函数知识点总结20篇04-20

初二函数知识点总结07-27