二次函数的知识点

时间:2024-09-29 10:43:19 诗琳 知识点总结 我要投稿

(优秀)二次函数的知识点

  总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,通过它可以正确认识以往学习和工作中的优缺点,为此要我们写一份总结。那么我们该怎么去写总结呢?以下是小编帮大家整理的二次函数的知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

(优秀)二次函数的知识点

  二次函数的知识点 1

  一、二次函数概念:

  a0)b,c是常数

  1.二次函数的概念:一般地,形如yax2bxc(a,的函数,叫做二次函数。这c可以为零.二次函数的定义域是全体实里需要强调:和一元二次方程类似,二次项系数a0,而b,数.

  2.二次函数yax2bxc的结构特征:

  ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.b,c是常数,a是二次项系数,b是一次项系数,c是常数项.

  ⑵a,二、二次函数的基本形式

  1.二次函数基本形式:yax2的性质:a的绝对值越大,抛物线的开口越小。

  a的符号a0开口方向顶点坐标对称轴向上00,00,性质x0时,y随x的增大而增大;x0时,y随y轴x的增大而减小;x0时,y有最小值0.x0时,y随x的增大而减小;x0时,y随a0向下y轴x的增大而增大;x0时,y有最大值0.

  2.yax2c的性质:上加下减。

  a的符号a0开口方向顶点坐标对称轴向上c0,c0,性质x0时,y随x的增大而增大;x0时,y随y轴x的增大而减小;x0时,y有最小值c.x0时,y随x的增大而减小;x0时,y随a0向下y轴x的增大而增大;x0时,y有最大值c.

  3.yaxh的性质:左加右减。

  2a的符号a0开口方向顶点坐标对称轴向上0h,0h,性质xh时,y随x的增大而增大;xh时,y随X=hx的增大而减小;xh时,y有最小值0.xh时,y随x的增大而减小;xh时,y随a02向下X=hx的增大而增大;xh时,y有最大值0.

  4.yaxhk的性质:

  a的符号开口方向顶点坐标对称轴性质a0向上h,kh,kX=hxh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值k.xh时,y随x的增大而减小;xh时,y随a0向下X=hx的增大而增大;xh时,y有最大值k.

  三、二次函数图象的平移

  1.平移步骤:

  方法一:

  ⑴将抛物线解析式转化成顶点式yaxhk,确定其顶点坐标h,k;

  ⑵保持抛物线yax2的形状不变,将其顶点平移到h,k处,具体平移方法如下:

  向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k

  画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.

  六、二次函数yax2bxc的性质

  b4acb2b1.当a0时,抛物线开口向上,对称轴为x,顶点坐标为,.

  2a4a2a当xbbb时,y随x的增大而减小;当x时,y随x的增大而增大;当x时,y有最小2a2a2a4acb2值.

  4ab4acb2bb2.当a0时,抛物线开口向下,对称轴为x,顶点坐标为,时,y随.当x2a4a2a2a4acb2bb.x的增大而增大;当x时,y随x的增大而减小;当x时,y有最大值

  2a2a4a

  七、二次函数解析式的表示方法

  1.一般式:yax2bxc(a,b,c为常数,a0);

  2.顶点式:ya(xh)2k(a,h,k为常数,a0);

  3.两根式:ya(xx1)(xx2)(a0,x1,x2是抛物线与x轴两交点的横坐标).

  注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即b24ac0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.

  八、二次函数的图象与各项系数之间的关系

  1.二次项系数a

  二次函数yax2bxc中,a作为二次项系数,显然a0.

  ⑴当a0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;

  ⑵当a0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大.

  总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小.

  2.一次项系数b

  在二次项系数a确定的前提下,b决定了抛物线的对称轴.

  ⑴在a0的前提下,当b0时,当b0时,当b0时,b0,即抛物线的对称轴在y轴左侧;2ab0,即抛物线的对称轴就是y轴;2ab0,即抛物线对称轴在y轴的.右侧.2a⑵在a0的前提下,结论刚好与上述相反,即当b0时,当b0时,当b0时,b0,即抛物线的对称轴在y轴右侧;2ab0,即抛物线的对称轴就是y轴;2ab0,即抛物线对称轴在y轴的左侧.2a

  总结起来,在a确定的前提下,b决定了抛物线对称轴的位置.

  ab的符号的判定:对称轴xb在y轴左边则ab0,在y轴的右侧则ab0,概括的说就是“左同2a右异”总结:

  3.常数项c

  ⑴当c0时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;

  ⑵当c0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;

  ⑶当c0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.

  b,c都确定,那么这条抛物线就是唯一确定的总之,只要a,二次函数解析式的确定:

  根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:

  1.已知抛物线上三点的坐标,一般选用一般式;

  2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;

  3.已知抛物线与x轴的两个交点的横坐标,一般选用两根式;

  4.已知抛物线上纵坐标相同的两点,常选用顶点式.

  九、二次函数图象的对称

  二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达

  1.关于x轴对称

  yax2bxc关于x轴对称后,得到的解析式是yax2bxc;

  yaxhk关于x轴对称后,得到的解析式是yaxhk;

  2.关于y轴对称

  yax2bxc关于y轴对称后,得到的解析式是yax2bxc;

  22yaxhk关于y轴对称后,得到的解析式是yaxhk;

  3.关于原点对称

  yax2bxc关于原点对称后,得到的解析式是yax2bxc;yaxhk关于原点对称后,得到的解析式是yaxhk;

  4.关于顶点对称(即:抛物线绕顶点旋转180°)

  2222b2yaxbxc关于顶点对称后,得到的解析式是yaxbxc;

  2a22yaxhk关于顶点对称后,得到的解析式是yaxhk.n对称

  5.关于点m,n对称后,得到的解析式是yaxh2m2nkyaxhk关于点m,根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

  十、二次函数与一元二次方程:

  1.二次函数与一元二次方程的关系(二次函数与x轴交点情况):

  一元二次方程ax2bxc0是二次函数yax2bxc当函数值y0时的特殊情况.图象与x轴的交点个数:

  ①当b24ac0时,图象与x轴交于两点Ax1,0,Bx2,0(x1x2),其中的x1,x2是一元二次

  b24ac方程axbxc0a0的两根.这两点间的距离ABx2x1.

  a2

  ②当0时,图象与x轴只有一个交点;

  ③当0时,图象与x轴没有交点.

  1"当a0时,图象落在x轴的上方,无论x为任何实数,都有y0;

  2"当a0时,图象落在x轴的下方,无论x为任何实数,都有y0.

  2.抛物线yax2bxc的图象与y轴一定相交,交点坐标为(0,c);

  3.二次函数常用解题方法总结:

  ⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;

  ⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;

  ⑶根据图象的位置判断二次函数yax2bxc中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;

  ⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.

  ⑸与二次函数有关的还有二次三项式,二次三项式ax2bxc(a0)本身就是所含字母x的二次函数;下面以a0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:

  0抛物线与x轴有两个交点0二次三项式的值可正、可零、可负二次三项式的值为非负二次三项式的值恒为正一元二次方程有两个不相等实根一元二次方程有两个相等的实数根一元二次方程无实数根.0抛物线与x轴只有一个交点抛物线与x轴无交点y=2x2y=x2y=3(x+4)2二次函数图像参考:

  y=3x2y=3(x-2)2y=x22

  y=2x2y=2(x-4)2y=2(x-4)2-3y=2x2+2y=2x2y=2x2-4x2y=-2y=-x2y=-2x2十一、函数的应用

  刹车距离二次函数应用何时获得最大利润

  最大面积是多少y=-2(x+3)2y=-2x2y=-2(x-3)2

  二次函数的知识点 2

  I.定义与定义表达式

  一般地,自变量_和因变量y之间存在如下关系:y=a_^2+b_+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为_的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=a_^2+b_+c(a,b,c为常数,a≠0)

  顶点式:y=a(_-h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(_-_?)(_-_?)[仅限于与_轴有交点A(_?,0)和B(_?,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a

  III.二次函数的'图像

  在平面直角坐标系中作出二次函数y=_^2的图像,可以看出,二次函数的图像是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线_=-b/2a。

  对称轴与抛物线的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线_=0)

  2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在_轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与_轴交点个数

  Δ=b^2-4ac>0时,抛物线与_轴有2个交点。

  Δ=b^2-4ac=0时,抛物线与_轴有1个交点。

  Δ=b^2-4ac<0时,抛物线与_轴没有交点。

  _的取值是虚数(_=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  V.二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=a_^2+b_+c,

  当y=0时,二次函数为关于_的一元二次方程(以下称方程),即a_^2+b_+c=0

  此时,函数图像与_轴有无交点即方程有无实数根。函数与_轴交点的横坐标即为方程的根。

  二次函数的知识点 3

  二次函数概念

  一般地,把形如y=ax2+bx+c(其中a、b、c是常数,a≠0,b,c可以为0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。二次函数图像是轴对称图形。

  注意:“变量”不同于“自变量”,不能说“二次函数是指变量的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在实数范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别,如同函数不等于函数的关系。

  二次函数公式大全

  二次函数

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:

  y=ax2+bx+c(a,b,c为常数,a≠0)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax2;+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)2;+k [抛物线的顶点P(h,k)]

  交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2a k=(4ac-b2;)/4a x1,x2=(-b±√b2;-4ac)/2a

  III.二次函数的图象

  在平面直角坐标系中作出二次函数y=x??的.图象,

  可以看出,二次函数的图象是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线

  x = -b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为

  P [ -b/2a ,(4ac-b2;)/4a ]。

  当-b/2a=0时,P在y轴上;当Δ= b2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  Δ= b2-4ac>0时,抛物线与x轴有2个交点。

  Δ= b2-4ac=0时,抛物线与x轴有1个交点。

  Δ= b2-4ac<0时,抛物线与x轴没有交点。

  V.二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax2;+bx+c,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),

  即ax2;+bx+c=0

  此时,函数图象与x轴有无交点即方程有无实数根。

  函数与x轴交点的横坐标即为方程的根。

  二次函数的知识点 4

  特别地,二次函数(以下称函数)y=ax+bx+c。

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax+bx+c=0。

  此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

  1.二次函数y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的图象形状相同,只是位置不同。当h>0时,y=a(x-h)的图象可由抛物线y=ax向右平行移动h个单位得到。

  当h<0时,则向xxx移动|h|个单位得到。

  当h>0,k>0时,将抛物线y=ax向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)+k的图象。

  当h>0,k<0时,将抛物线y=ax向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象。

  当h<0,k>0时,将抛物线向xxx移动|h|个单位,再向上移动k个单位可得到y=a(x-h)+k的图象。

  当h<0,k<0时,将抛物线向xxx移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象。

  因此,研究抛物线y=ax+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便。

  2.抛物线y=ax+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b]/4a)。

  3.抛物线y=ax+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小。

  4.抛物线y=ax+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c)。

  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x,0)和B(x,0),其中的.x1,x2是一元二次方程ax+bx+c=0(a≠0)的两根.这两点间的距离AB=|x-x|。

  当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。

  5.抛物线y=ax+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b)/4a。

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax+bx+c(a≠0)。

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)+k(a≠0)。

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a≠0)。

  二次函数的知识点 5

  1、二次函数的定义

  一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函数.

  注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;

  (2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),自变量x的取值范围是全体实数;

  (3)当b=c=0时,二次函数y=ax2是最简单的二次函数;

  (4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数.

  2、二次函数解析式的几种形式

  (1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0).

  (2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).

  (3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.

  说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点

  3、二次函数y=ax2+c的图象与性质

  (1)抛物线y=ax2+c的.形状由a决定,位置由c决定.

  (2)二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y轴.

  当a>0时,图象的开口向上,有最低点(即顶点),当x=0时,y最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大.

  当a<0时,图象的开口向下,有最高点(即顶点),当x=0时,y最大值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小.

  (3)抛物线y=ax2+c与y=ax2的关系.

  抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动.

  二次函数的知识点 6

  当h>0时,y=a(_-h)^2的图象可由抛物线y=a_^2向右平行移动h个单位得到,

  当h<0时,则向左平行移动|h|个单位得到.

  当h>0,k>0时,将抛物线y=a_^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(_-h)^2+k的图象;

  当h>0,k<0时,将抛物线y=a_^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(_-h)^2+k的图象;

  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(_-h)^2+k的图象;

  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(_-h)^2+k的图象;

  因此,研究抛物线y=a_^2+b_+c(a≠0)的图象,通过配方,将一般式化为y=a(_-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

  2.抛物线y=a_^2+b_+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线_=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

  3.抛物线y=a_^2+b_+c(a≠0),若a>0,当_≤-b/2a时,y随_的`增大而减小;当_≥-b/2a时,y随_的增大而增大.若a<0,当_≤-b/2a时,y随_的增大而增大;当_≥-b/2a时,y随_的增大而减小.

  4.抛物线y=a_^2+b_+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2-4ac>0,图象与_轴交于两点A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0

  (a≠0)的两根.这两点间的距离AB=|_?-_?|

  当△=0.图象与_轴只有一个交点;

  当△<0.图象与_轴没有交点.当a>0时,图象落在_轴的上方,_为任何实数时,都有y>0;当a<0时,图象落在_轴的下方,_为任何实数时,都有y<0.

  5.抛物线y=a_^2+b_+c的最值:如果a>0(a<0),则当_=-b/2a时,y最小(大)值=(4ac-b^2)/4a.

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知_、y的三对对应值时,可设解析式为一般形式:

  y=a_^2+b_+c(a≠0).

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(_-h)^2+k(a≠0).

  (3)当题给条件为已知图象与_轴的两个交点坐标时,可设解析式为两根式:y=a(_-_?)(_-_?)(a≠0).

  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

  二次函数的知识点 7

  1.二次函数的概念

  二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数。

  2.二次函数的结构特征:

  ⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2。

  ⑵是常数,是二次项系数,是一次项系数,是常数项。

  2.初三数学二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)。顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]。

  交点式:y=a(x-x)(x-x)[仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]。

  注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a。

  3.二次函数的性质

  1.性质:

  (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

  (2)一次函数与y轴交点的.坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

  2.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。当b>0时,直线必通过一、二象限;当b=0时,直线通过原点;当b<0时,直线必通过三、四象限。特别地,当b=o时,直线通过原点o(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

  4.初三数学二次函数图像

  对于一般式:①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称。

  ②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称。

  ③y=ax2+bx+c与y=-ax2-bx+c-b2/2a关于顶点对称。

  ④y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)

  对于顶点式:

  ①y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h,k)和(-h,k)关于y轴对称,横坐标相反、纵坐标相同。

  ②y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h,k)和(h,-k)关于x轴对称,横坐标相同、纵坐标相反。

  ③y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h,k)和(h,k)相同,开口方向相反。

  ④y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h,k)和(-h,-k)关于原点对称,横坐标、纵坐标都相反。(其实①③④就是对f(x)来说f(-x),-f(x),-f(-x)的情况)

  二次函数的知识点 8

  一、基本概念

  1、方程、方程的解(根)、方程组的解、解方程(组)

  2、分类:

  二、解方程的依据—等式性质

  1、a=b←→a+c=b+c

  2、a=b←→ac=bc(c≠0)

  三、解法

  1、一元一次方程的解法:去分母→去括号→移项→合并同类项→

  系数化成1→解。

  2、元一次方程组的解法:

  ⑴基本思想:“消元”

  ⑵方法:

  ①代入法

  ②加减法

  四、一元二次方程

  1、定义及一般形式:

  2、解法:⑴直接开平方法(注意特征)

  ⑵配方法(注意步骤—推倒求根公式)

  ⑶公式法:

  ⑷因式分解法(特征:左边=0)

  3、根的判别式:

  4、根与系数顶的关系:

  逆定理:若,则以为根的`一元二次方程是:。

  5、常用等式:

  五、可化为一元二次方程的方程

  1、分式方程

  ⑴定义

  ⑵基本思想:

  ⑶基本解法:

  ①去分母法

  ②换元法(如,)

  ⑷验根及方法

  2、无理方程

  ⑴定义

  ⑵基本思想:

  ⑶基本解法:

  ①乘方法(注意技巧!)

  ②换元法(例,)

  ⑷验根及方法

  3、简单的二元二次方程组

  由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。

  二次函数的知识点 9

  二次函数图像与性质口诀:

  二次函数抛物线,图象对称是关键;

  开口、顶点和交点,它们确定图象现;

  开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。

  若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。

  反比例函数图像与性质口诀:

  反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;

  图在一、三函数减,两个分支分别减。

  图在二、四正相反,两个分支分别添;二次函数知识点总结。

  线越长越近轴,永远与轴不沾边。

  三角函数的增减性:

  正增余减特殊三角函数值记忆:

  首先记住30度、45度、60度的.正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可。

  二次函数的知识点 10

  二次函数是初中数学中最精彩的内容之一,也是历年中考的热点和难点。其中,关于函数解析式的确定是非常重要的题型。随着中考面临新课程改革,教材的内容和学习要求变化较大,其中一个突出的变化就是强化了对图形变换的要求,那么二次函数和图形变化的结合,将是同学们在学习中不可忽视的内容。

  图形变换包含平移、轴对称、旋转、位似四种变换,那么二次函数的图像在其图形变化(平移、轴对称、旋转)的过程中,如何完成解析式的确定呢?解决此类问题的方法很多,关键在于解决问题的着眼点。笔者认为最好的方法是用顶点式的方法。因此解题时,先将二次函数解析式化为顶点式,确定其顶点坐标,再根据具体图形变换的特点,确定变化后新的顶点坐标及a值。

  1、平移:二次函数图像经过平移变换不会改变图形的形状和开口方向,因此a值不变。顶点位置将会随着整个图像的平移而变化,因此只要按照点的移动规律,求出新的顶点坐标即可确定其解析式。

  例1.将二次函数y=x2-2x-3的图像向上平移2个单位,再向右平移1个单位,得到的新的图像解析式为_____

  分析:将y=x2-2x-3化为顶点式y=(x-1)2-4,a值为1,顶点坐标为(1,-4),将其图像向上平移2个单位,再向右平移1个单位,那么顶点也会相应移动,其坐标为(2,-2),由于平移不改变二次函数的图像的形状和开口方向,因此a值不变,故平移后的'解析式为y=(x-2)2-2。

  2、轴对称:此图形变换包括x轴对称和关于y轴对称两种方式。

  二次函数图像关于x轴对称的图像,其形状不变,但开口方向相反,因此a值为原来的相反数。顶点位置改变,只要根据关于x轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。

  二次函数图像关于y轴对称的图像,其形状和开口方向都不变,因此a值不变。但是顶点位置会改变,只要根据关于y轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。

  例2.求抛物线y=x2-2x-3关于x轴以及y轴对称的抛物线的解析式。

  分析:y=x2-2x-3=(x-1)2-4,a值为1,其顶点坐标为(1,-4),若关于x轴对称,a值为-1,新的顶点坐标为(1,4),故解析式为y=-(x-1)2+4;若关于y轴对称,a值仍为1,新的顶点坐标为(-1,-4),因此解析式为y=(x+1)2-4。

  3、旋转:主要是指以二次函数图像的顶点为旋转中心,旋转角为180°的图像变换,此类旋转,不会改变二次函数的图像形状,开口方向相反,因此a值会为原来的相反数,但顶点坐标不变,故很容易求其解析式。

  例3.将抛物线y=x2-2x+3绕其顶点旋转180°,则所得的抛物线的函数解析式为________

  分析:y=x2-2x+3=(x-1)2+2中,a值为1,顶点坐标为(1,2),抛物线绕其顶点旋转180°后,a值为-1,顶点坐标不变,故解析式为y=-(x-1)2+2。

  二次函数的知识点 11

  (1)最大值或最小值的求法

  第一步确定a的符号:a>0有最小值,a<0有最大值;第二步求顶点,顶点的纵坐标即为对应的最大值或最小值。

  (2)y轴与抛物线y=ax^2+bx+c的交点为(0,c)。

  (3)与y轴平行的直线x=h与抛物线y=ax^2+bx+c有且只有一个交点(h,ah^2+bh+c)。

  (4)抛物线与x轴的交点。

  二次函数y=ax^2+bx+c的图像与x轴的两个交点的横坐标x1,x2是对应的一元二次方程ax^2+bx+c=0的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:

  ①有两个交点△>0抛物线与x轴相交。

  ②有一个交点(顶点在x轴上)△=0抛物线与x轴相切;

  ③没有交点△<0抛物线与x轴相离。

  (5)平行于x轴的直线与抛物线的交点。

  同(4)一样可能有0个交点,1个交点,2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是ax^2+bx+c=k的两个实数根。

  (6)一次函数y=kx+n(k≠0)的'图像l与二次函数y=ax^2+bx+c(a≠0)的图像g的交点,由方程组y=kx+n和y=ax^2+bx+c的解的数目确定:①当方程组有两组不同的解时l与g有两个交点;②方程组只有一组解时l与g只有一个交点;③方程组无解时l与g没有交点.

  (7)利用函数图像求不等式的解集,先观察图像,找出抛物线与x轴的交点,再根据交点坐标写出不等式的解集.注意:观察图像时不要看漏了其中的部分。

  二次函数的知识点 12

  二次函数(quadraticfunction)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(乘)=a乘^2b乘c(a不为0)。其图像是一条主轴平行于y轴的抛物线。

  一般的,自变量乘和因变量y之间存在如下关系:

  一般式

  y=a乘∧2;b乘c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a);

  顶点式

  y=a(乘m)∧2k(a≠0,a、m、k为常数)或y=a(乘-h)∧2k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为乘=-m,顶点的位置特征和图像的开口方向与函数y=a乘∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;

  交点式

  y=a(乘-乘1)(乘-乘2)[仅限于与乘轴有交点A(乘1,0)和B(乘2,0)的抛物线];

  重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。

  牛顿插值公式(已知三点求函数解析式)

  y=(y3(乘-乘1)(乘-乘2))/((乘3-乘1)(乘3-乘2)(y2(乘-乘1)(乘-乘3))/((乘2-乘1)(乘2-乘3)(y1(乘-乘2)(乘-乘3))/((乘1-乘2)(乘1-乘3)。由此可引导出交点式的系数a=y1/(乘1乘乘2)(y1为截距)

  求根公式

  二次函数表达式的右边通常为二次三项式。

  乘是自变量,y是乘的二次函数

  乘1,乘2=[-b±(√(b^2-4ac))]/2a

  (即一元二次方程求根公式)

  求根的方法还有因式分解法和配方法

  在平面直角坐标系中作出二次函数y=2乘的平方的图像,

  可以看出,二次函数的图像是一条永无止境的抛物线。不同的二次函数图像

  如果所画图形准确无误,那么二次函数将是由一般式平移得到的。

  注意:草图要有1本身图像,旁边注明函数。

  2画出对称轴,并注明乘=什么

  3与乘轴交点坐标,与Y轴交点坐标,顶点坐标。抛物线的性质

  轴对称

  1.抛物线是轴对称图形。对称轴为直线乘=-b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线乘=0)

  顶点

  2.抛物线有一个顶点P,坐标为P(-b/2a,4ac-b^2;)/4a)

  当-b/2a=0时,P在y轴上;当Δ=b^2;-4ac=0时,P在乘轴上。

  开口

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的'开口越小。

  决定对称轴位置的因素

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号

  当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b 2a="">0,所以b/2a要小于0,所以a、b要异号

  可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

  事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

  决定抛物线与y轴交点的因素

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  抛物线与乘轴交点个数

  6.抛物线与乘轴交点个数

  Δ=b^2-4ac>0时,抛物线与乘轴有2个交点。

  Δ=b^2-4ac=0时,抛物线与乘轴有1个交点。

  Δ=b^2-4ac<0时,抛物线与乘轴没有交点。乘的取值是虚数(乘=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  当a>0时,函数在乘=-b/2a处取得最小值f(-b/2a)=4ac-b/4a;在{乘|乘<-b/2a}上是减函数,在

  {乘|乘>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变

  当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=a乘^2c(a≠0)

  特殊值的形式

  7.特殊值的形式

  ①当乘=1时y=abc

  ②当乘=-1时y=a-bc

  ③当乘=2时y=4a2bc

  ④当乘=-2时y=4a-2bc

【二次函数的知识点】相关文章:

二次函数的知识点总结09-17

数学二次函数知识点总结04-19

二次函数的知识点总结8篇(精品)09-18

(精华)二次函数的知识点总结8篇09-17

《二次函数》教案02-21

函数知识点03-01

[精选]函数知识点03-01

二次函数教学设计03-13

二次函数的教学设计04-01