函数知识点总结

时间:2024-09-20 15:56:59 知识点总结 我要投稿

函数知识点总结(实用)

  总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,它能够给人努力工作的动力,是时候写一份总结了。如何把总结做到重点突出呢?下面是小编为大家收集的函数知识点总结,仅供参考,大家一起来看看吧。

函数知识点总结(实用)

函数知识点总结1

  1.常量和变量

  在某变化过程中可以取不同数值的量,叫做变量.在某变化过程中保持同一数值的量或数,叫常量或常数.

  2.函数

  设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.

  3.自变量的取值范围

  (1)整式:自变量取一切实数.(2)分式:分母不为零.

  (3)偶次方根:被开方数为非负数.

  (4)零指数与负整数指数幂:底数不为零.

  4.函数值

  对于自变量在取值范围内的一个确定的值,如当x=a时,函数有唯一确定的对应值,这个对应值,叫做x=a时的函数值.

  5.函数的表示法

  (1)解析法;(2)列表法;(3)图象法.

  6.函数的图象

  把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个函数的图象.由函数解析式画函数图象的步骤:

  (1)写出函数解析式及自变量的取值范围;

  (2)列表:列表给出自变量与函数的一些对应值;

  (3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;

  (4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来.

  7.一次函数

  (1)一次函数

  如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.

  特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.

  (2)一次函数的图象

  一次函数y=kx+b的图象是一条经过(0,b)点和点的直线.特别地,正比例函数图象是一条经过原点的直线.需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象.

  (3)一次函数的性质

  当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为.

  (4)用函数观点看方程(组)与不等式

  ①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标.

  ②二元一次方程组对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.

  ③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.

  8.反比例函数(1)反比例函数

  (1)如果(k是常数,k≠0),那么y叫做x的反比例函数.

  (2)反比例函数的图象反比例函数的图象是双曲线.

  (3)反比例函数的性质

  ①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.

  ②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.

  ③反比例函数图象关于直线y=±x对称,关于原点对称.

  (4)k的两种求法

  ①若点(x0,y0)在双曲线上,则k=x0y0.②k的几何意义:

  若双曲线上任一点A(x,y),AB⊥x轴于B,则S△AOB

  (5)正比例函数和反比例函数的交点问题

  若正比例函数y=k1x(k1≠0),反比例函数,则当k1k2<0时,两函数图象无交点;

  当k1k2>0时,两函数图象有两个交点,坐标分别为由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.

  1.二次函数

  如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x的二次函数.

  几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0).

  2.二次函数的图象

  二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线.由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象.

  3.二次函数的性质

  二次函数y=ax2+bx+c的性质对应在它的'图象上,有如下性质:

  (1)抛物线y=ax2+bx+c的顶点是,对称轴是直线,顶点必在对称轴上;

  (2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的任意一点(x,y),当x<时,y随x的增大而减小;当x>时,y随x的增大而增大;当x=,y有最小值;若a<0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任意一点(x,y),当x<,y随x的增大而增大;当时,y随x的增大而减小;当x=时,y有最大值;

  (3)抛物线y=ax2+bx+c与y轴的交点为(0,c);

  (4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+bx+c与x轴交点的情况:

  <0时,抛物线y=ax2+bx+c与x轴没有公共点.=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点;当=b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个不同的公共点,它们的坐标分别是和,这两点的距离为;当当4.抛物线的平移

  抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)、向左(右)平移,可以得到抛物线y=a(x-h)2+k.平移的方向、距离要根据h、k的值来决定.

函数知识点总结2

  I.定义与定义表达式

  一般地,自变量_和因变量y之间存在如下关系:y=a_^2+b_+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为_的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=a_^2+b_+c(a,b,c为常数,a≠0)

  顶点式:y=a(_-h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(_-_?)(_-_?)[仅限于与_轴有交点A(_?,0)和B(_?,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a

  III.二次函数的图像

  在平面直角坐标系中作出二次函数y=_^2的图像,可以看出,二次函数的图像是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线_=-b/2a。

  对称轴与抛物线的交点为抛物线的顶点P。特别地,当b=0时,抛物线的'对称轴是y轴(即直线_=0)

  2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在_轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与_轴交点个数

  Δ=b^2-4ac>0时,抛物线与_轴有2个交点。

  Δ=b^2-4ac=0时,抛物线与_轴有1个交点。

  Δ=b^2-4ac<0时,抛物线与_轴没有交点。

  _的取值是虚数(_=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  V.二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=a_^2+b_+c,

  当y=0时,二次函数为关于_的一元二次方程(以下称方程),即a_^2+b_+c=0

  此时,函数图像与_轴有无交点即方程有无实数根。函数与_轴交点的横坐标即为方程的根。

函数知识点总结3

  二次函数概念

  一般地,把形如y=ax2+bx+c(其中a、b、c是常数,a≠0,b,c可以为0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。二次函数图像是轴对称图形。

  注意:“变量”不同于“自变量”,不能说“二次函数是指变量的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在实数范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的'字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别,如同函数不等于函数的关系。

  二次函数公式大全

  二次函数

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:

  y=ax2+bx+c(a,b,c为常数,a≠0)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax2;+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)2;+k [抛物线的顶点P(h,k)]

  交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2a k=(4ac-b2;)/4a x1,x2=(-b±√b2;-4ac)/2a

  III.二次函数的图象

  在平面直角坐标系中作出二次函数y=x??的图象,

  可以看出,二次函数的图象是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线

  x = -b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为

  P [ -b/2a ,(4ac-b2;)/4a ]。

  当-b/2a=0时,P在y轴上;当Δ= b2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  Δ= b2-4ac>0时,抛物线与x轴有2个交点。

  Δ= b2-4ac=0时,抛物线与x轴有1个交点。

  Δ= b2-4ac<0时,抛物线与x轴没有交点。

  V.二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax2;+bx+c,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),

  即ax2;+bx+c=0

  此时,函数图象与x轴有无交点即方程有无实数根。

  函数与x轴交点的横坐标即为方程的根。

函数知识点总结4

  高一数学第三章函数的应用知识点总结

  一、方程的根与函数的零点

  1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。

  2、函数零点的意义:函数yf(x)的零点就是方程f(x)0实数根,亦即函数

  yf(x)的图象与x轴交点的横坐标。

  即:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.

  3、函数零点的求法:

  1(代数法)求方程f(x)0的实数根;○

  2(几何法)对于不能用求根公式的方程,可以将它与函数yf(x)的图象○

  联系起来,并利用函数的性质找出零点.

  零点存在性定理:如果函数y=f(x)在区间〔a,b〕上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。先判定函数单调性,然后证明是否有f(a)f(b)第三章函数的应用习题

  一、选择题

  1.下列函数有2个零点的是()

  222y3x10y4x5x10yx3x5y4x4x1A、B、C、D、22.用二分法计算3x3x80在x(1,2)内的根的过程中得:f(1)0,f(1.5)0,

  f(1.25)0,则方程的根落在区间()

  A、(1,1.5)B、(1.5,2)C、(1,1.25)D、(1.25,1.5)

  3.若方程axxa0有两个解,则实数a的取值范围是A、(1,)B、(0,1)C、(0,)D、

  4.函数f(x)=lnx-2x的零点所在的大致区间是()A.(1,2)B.2,eC.e,3D.e,

  5.已知方程x3x10仅有一个正零点,则此零点所在的区间是()

  A.(3,4)B.(2,3)C.(1,2)D.(0,1)

  6.函数f(x)lnx2x6的零点落在区间()A.(2,2.25)B.(2.25,2.5)C.(2.5,2.75)D.(2.75,3)

  7.已知函数

  fx的图象是不间断的,并有如下的对应值表:x1234567fx8735548那么函数在区间(1,6)上的零点至少有()个A.5B.4C.3D.28.方程2x1x5的解所在的区间是A(0,1)B(1,2)C(2,3)D(3,4)

  9.方程4x35x60的根所在的区间为A、(3,2)B、(2,1)C、(1,0)D、(0,1)

  10.已知f(x)2x22x,则在下列区间中,f(x)0有实数解的是()

  )

  ()

  ()

  ((A)(-3,-2)(B)(-1,0)(C)(2,3)(D)(4,5)11.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为()

  xexx+2-10.37101212.72327.394320.095A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12、方程

  x12x根的个数为()

  A、0B、1C、2D、3二、填空题

  13.下列函数:1)y=lgx;2)y2;3)y=x2;4)y=|x|-1;其中有2个零点的函数的序号是。

  x214.若方程3x2的实根在区间m,n内,且m,nZ,nm1,

  x则mn.

  222f(x)(x1)(x2)(x2x3)的`零点是15、函数(必须写全所有的零点)。

  扩展阅读:高中数学必修一第三章函数的应用知识点总结

  第三章函数的应用

  一、方程的根与函数的零点

  1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。

  2、函数零点的意义:函数yf(x)的零点就是方程f(x)0实数根,亦即函数

  yf(x)的图象与x轴交点的横坐标。

  即:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.

  3、函数零点的求法:

  1(代数法)求方程f(x)0的实数根;○

  2(几何法)对于不能用求根公式的方程,可以将它与函数yf(x)的图象联系起来,○

  并利用函数的性质找出零点.

  4、基本初等函数的零点:

  ①正比例函数ykx(k0)仅有一个零点。

  k(k0)没有零点。x③一次函数ykxb(k0)仅有一个零点。

  ②反比例函数y④二次函数yax2bxc(a0).

  (1)△>0,方程ax2bxc0(a0)有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.

  (2)△=0,方程ax2bxc0(a0)有两相等实根,二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.

  (3)△<0,方程ax2bxc0(a0)无实根,二次函数的图象与x轴无交点,二次函数无零点.

  ⑤指数函数ya(a0,且a1)没有零点。⑥对数函数ylogax(a0,且a1)仅有一个零点1.

  ⑦幂函数yx,当n0时,仅有一个零点0,当n0时,没有零点。

  5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把fx转化成,这另fx0,再把复杂的函数拆分成两个我们常见的函数y1,y2(基本初等函数)个函数图像的交点个数就是函数fx零点的个数。

  6、选择题判断区间a,b上是否含有零点,只需满足fafb0。Eg:试判断方程xx2x10在区间[0,2]内是否有实数解?并说明理由。

  1

  42x7、确定零点在某区间a,b个数是唯一的条件是:①fx在区间上连续,且fafb0②在区间a,b上单调。Eg:求函数f(x)2xlg(x1)2的零点个数。

  8、函数零点的性质:

  从“数”的角度看:即是使f(x)0的实数;

  从“形”的角度看:即是函数f(x)的图象与x轴交点的横坐标;

  若函数f(x)的图象在xx0处与x轴相切,则零点x0通常称为不变号零点;若函数f(x)的图象在xx0处与x轴相交,则零点x0通常称为变号零点.

  Eg:一元二次方程根的分布讨论

  一元二次方程根的分布的基本类型

  2axbxc0(a0)的两实根为x1,x2,且x1x2.设一元二次方程

  k为常数,则一元二次方程根的k分布(即x1,x2相对于k的位置)或根在区间上的

  分布主要有以下基本类型:

  表一:(两根与0的大小比较)

  分布情况两个负根即两根都小于0两个正根即两根都大于0一正根一负根即一个根小于0,一个大于0x10,x20x10,x20x10x2a0)大致图象(得出的结论0b02af000b02af00f00

  大致图象(a0)得出的结论0b02af000b02aaf000b02af000b02aaf00f00(不综讨合论结a论)

  af00表二:(两根与k的大小比较)

  分布情况两根都小于k即两根都大于k即一个根小于k,一个大于k即x1k,x2kx1k,x2kx1kx2a0)大致图象(kkk得出的结论0bk2afk00bk2afk0fk0大致图象(a0)得出的结论0bk2afk00bk2aafk00bk2afk00bk2aafk0fk0(不综讨合论结a论)a0)afk0分布情况大致图象(得出的结论表三:(根在区间上的分布)

  两根都在m,n内两根有且仅有一根在m,n一根在m,n内,另一根在p,q内(有两种情况,只画了一种)内,mnpq0fm0fn0bmn2afmfn0fm0fn0fmfn0fp0fq0fpfq0或

  大致图象(a0)得出的结论0fm0fn0bmn2a综合结论fmfn0fm0fn0fmfn0fp0fq0fpfq0或fmfn0fpfq0(a不)讨论

  fmfn0Eg:(1)关于x的方程x22(m3)x2m140有两个实根,且一个大于1,一个小于1,求m的取值范围?

  (2)关于x的方程x2(m3)x2m140有两实根在[0,4]内,求m的取值范围?

  2(3)关于x的方程mx2(m3)x2m140有两个实根,且一个大于4,一个小于4,求m的取值范围?

  9、二分法的定义

  对于在区间[a,b]上连续不断,且满足f(a)f(b)0的函数

  yf(x),通过不断地把函数f(x)的零点所在的区间一分为二,

  使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.

  10、给定精确度ε,用二分法求函数f(x)零点近似值的步骤:(1)确定区间[a,b],验证f(a)f(b)0,给定精度;(2)求区间(a,b)的中点x1;(3)计算f(x1):

  ①若f(x1)=0,则x1就是函数的零点;

  ②若f(a)f(x1)14、根据散点图设想比较接近的可能的函数模型:一次函数模型:f(x)kxb(k0);二次函数模型:g(x)ax2bxc(a0);幂函数模型:h(x)axb(a0);

  指数函数模型:l(x)abxc(a0,b>0,b1)

  利用待定系数法求出各解析式,并对各模型进行分析评价,选出合适的函数模型

函数知识点总结5

  第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。

  在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。复合函数要注意外层函数的定义域由内层函数的值域决定。

  第二、带绝对值的函数单调性判断错误带绝对值的函数实质上就是分段函数,判断分段函数的单调性有两种方法:第一,在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,然后对各个段上的单调区间进行整合;第二,画出这个分段函数的图象,结合函数图象、性质能够进行直观的判断。函数题离不开函数图象,而函数图象反应了函数的所有性质,考生在解答函数题时,要第一时间在脑海中画出函数图象,从图象上分析问题,解决问题。

  对于函数不同的单调递增(减)区间,千万记住,不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。

  第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。

  在用定义进行判断时,要注意自变量在定义域区间内的任意性。

  第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的性质去解决抽象函数。多用特殊赋值法,通过特殊赋可以找到函数的不变性质,这往往是问题的突破口。

  抽象函数性质的证明属于代数推理,和几何推理证明一样,考生在作答时要注意推理的严谨性。每一步都要有充分的条件,别漏掉条件,更不能臆造条件,推理过程层次分明,还要注意书写规范。

  第五、函数零点定理使用不当若函数y=f(x)在区间[a,b]上的图象是连续不断的.一条曲线,且有f(a)f(b)<0。那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0。这个c也可以是方程f(c)=0的根,称之为函数的零点定理,分为“变号零点”和“不变号零点”,而对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时,考生需格外注意这类问题。

  第六、混淆两类切线曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。

  因此,考生在求解曲线的切线问题时,首先要区分是什么类型的切线。

  第七、混淆导数与单调性的关系一个函数在某个区间上是增函数的这类题型,如果考生认为函数的导函数在此区间上恒大于0,很容易就会出错。

  解答函数的单调性与其导函数的关系时一定要注意,一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。

  第八、导数与极值关系不清考生在使用导数求函数极值类问题时,容易出现的错误就是求出使导函数等于0的点,却没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点,往往就会出错,出错原因就是考生对导数与极值关系没搞清楚。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,小编在此提醒广大考生,在使用导数求函数极值时,一定要对极值点进行仔细检查。

函数知识点总结6

  k0时,y随x的增大而减小,直线一定过二、四象限(3)若直线l1:yk1xb1l2:yk2xb2

  当k1k2时,l1//l2;当b1b2b时,l1与l2交于(0,b)点。

  (4)当b>0时直线与y轴交于原点上方;当b学大教育

  (1)是中心对称图形,对中称心是原点(2)对称性:是轴直线yx和yx(2)是轴对称图形,对称k0时两支曲线分别位于一、三象限且每一象限内y随x的增大而减小(3)

  k0时两支曲线分别位于二、四象限且每一象限内y随x的增大而增大(4)过图象上任一点作x轴与y轴的垂线与坐标轴构成的矩形面积为|k|。

  P(1)应用在u3.应用(2)应用在(3)其它F上SS上t其要点是会进行“数结形合”来解决问题二、二次函数

  1.定义:应注意的问题

  (1)在表达式y=ax2+bx+c中(a、b、c为常数且a≠0)(2)二次项指数一定为22.图象:抛物线

  3.图象的性质:分五种情况可用表格来说明表达式(1)y=ax2顶点坐标对称轴(0,0)最大(小)值y最小=0y最大=0(2)y=ax2+c(0,0)y最小=0y最大=0(3)y=a(x-(h,0)h)2直线x=hy最小=0y最大=0y随x的变化情况随x增大而增大随x增大而减小随x的增大而增大随x的增大而减小随x的增大而增大随x的增大而减小直线x=0(y轴)①若a>0,则x=0时,若a>0,则x>0时,y②若a0,则x=0时,①若a>0,则x>0时,y②若a0,则x=h时,①若a>0,则x>h时,y②若a学大教育

  表达式h)2+k顶点坐标对称轴直线x=h最大(小)值y最小=ky最大=k(5)y=ax2+b(x+cb2ay随x的变化情况随x的增大而增大随x的增大而减小b2a时,①若a>0,则x>b2a(4)y=a(x-(h,k)①若a>0,则x=h时,①若a>0,则x>h时,y②若a0,则x=4acb24ay最小=4acb24ab时,y随x的增大而增大时,②若a2a2a时,y随x的增大而减小b②若a学大教育

  一次函数图象和性质

  【知识梳理】

  1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0).2.一次函数ykxb的图象是经过(3.一次函数ykxb的图象与性质

  图像的大致位置经过象限第象限第象限第象限第象限y随x的增大y随x的增大而y随x的增大y随x的增大性质而而而而

  【思想方法】数形结合

  k、b的符号k>0,b>0k>0,b<0k<0,b>0k<0,b<0b,0)和(0,b)两点的一条直线.k反比例函数图象和性质

  【知识梳理】

  1.反比例函数:一般地,如果两个变量x、y之间的关系可以表示成y=或(k为常数,k≠0)的形式,那么称y是x的反比例函数.2.反比例函数的图象和性质

  k的符号k>0yoxk<0yox

  图像的大致位置经过象限性质

  第象限在每一象限内,y随x的增大而第象限在每一象限内,y随x的`增大而3.k的几何含义:反比例函数y=的几何意义,即过双曲线y=

  k(k≠0)中比例系数kxk(k≠0)上任意一点P作x4

  x轴、y轴垂线,设垂足分别为A、B,则所得矩形OAPB

  函数学习方法学大教育

  的面积为.

  【思想方法】数形结合

  二次函数图象和性质

  【知识梳理】

  1.二次函数ya(xh)2k的图像和性质

  图象开口对称轴顶点坐标最值增减性

  在对称轴左侧在对称轴右侧当x=时,y有最值y随x的增大而y随x的增大而a>0yOa<0x当x=时,y有最值y随x的增大而y随x的增大而锐角三角函数

  【思想方法】

  1.常用解题方法设k法2.常用基本图形双直角

  【例题精讲】例题1.在△ABC中,∠C=90°.(1)若cosA=

  14,则tanB=______;(2)若cosA=,则tanB=______.255

  函数学习方法学大教育

  例题2.(1)已知:cosα=

  23,则锐角α的取值范围是()A.0°

函数知识点总结7

  1. 函数的奇偶性

  (1)若f(x)是偶函数,那么f(x)=f(-x) ;

  (2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

  2. 复合函数的有关问题

  (1)复合函数定义域求法:若已知 的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的单调性由“同增异减”判定;

  3.函数图像(或方程曲线的对称性)

  (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

  (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;

  4.函数的周期性

  (1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a0)恒成立,则y=f(x)是周期为2a的周期函数;

  (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的.周期函数;

  (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

  (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;

  (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;

  (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;

  5.

  方程k=f(x)有解 k∈D(D为f(x)的值域);

  6.

  a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

  7.

  (1) (a0,a≠1,b0,n∈R+);

  (2) l og a N= ( a0,a≠1,b0,b≠1);

  (3) l og a b的符号由口诀“同正异负”记忆;

  (4) a log a N= N ( a0,a≠1,N

  8. 判断对应是否为映射时,抓住两点:

  (1)A中元素必须都有象且唯一;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  10.对于反函数,应掌握以下一些结论:

  (1)定义域上的单调函数必有反函数;

  (2)奇函数的反函数也是奇函数;

  (3)定义域为非单元素集的偶函数不存在反函数;

  (4)周期函数不存在反函数;

  (5)互为反函数的两个函数具有相同的单调性;

  (5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

  11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

  12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

  13. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;

函数知识点总结8

  【—正比例函数公式】正比例函数要领:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的'正比例函数。

  正比例函数的性质

  定义域:R(实数集)

  值域:R(实数集)

  奇偶性:奇函数

  单调性:

  当>0时,图像位于第一、三象限,从左往右,y随x的增大而增大(单调递增),为增函数;

  当k<0时,图像位于第二、四象限,从左往右,y随x的增大而减小(单调递减),为减函数。

  周期性:不是周期函数。

  对称性:无轴对称性,但关于原点中心对称。

  正比例函数图像的作法

  1、在x允许的范围内取一个值,根据解析式求出y的值;

  2、根据第一步求的x、y的值描出点;

  3、作出第二步描出的点和原点的直线(因为两点确定一直线)。

函数知识点总结9

  基本概念

  1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。

  2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

  *判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。(x的取值范围)一次函数

  1..自变量x和因变量y有如下关系:

  y=kx+b(k为任意不为零实数,b为任意实数)则此时称y是x的一次函数。特别的,当b=0时,y是x的正比例函数。即:y=kx(k为任意不为零实数)

  定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际有意义。2.当x=0时,b为函数在y轴上的截距。一次函数性质:

  1在一次函数上的.任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

  2一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。3.函数不是数,它是指某一变量过程中两个变量之间的关系。

  特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。4、特殊位置关系

  当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等

  当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)

  应用

  一次函数y=kx+b的性质是:(1)当k>0时,y随x的增大而增大;(2)当ky2,则x1与x2的大小关系是()

  A.x1>x2B.x10,且y1>y2。根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。故选A。

  判断函数图象的位置例3.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限

  解:由kb>0,知k、b同号。因为y随x的增大而减小,所以k

  (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。5、函数的图像

  一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.

  6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。7、描点法画函数图形的一般步骤

  第一步:列表(表中给出一些自变量的值及其对应的函数值);

  第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。8、函数的表示方法

  列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

  解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

  图象法:形象直观,但只能近似地表达两个变量之间的函数关系。9、正比例函数及性质

  一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx(k不为零)①k不为零②x指数为1③b取零解析式:y=kx(k是常数,k≠0)必过点:(0,0)、(1,k)

  走向:k>0时,图像经过一、三象限;k0,y随x的增大而增大;k0时,向上平移;当b0,图象经过第一、三象限;k0,图象经过第一、二象限;b0,y随x的增大而增大;k0时,将直线y=kx的图象向上平移b个单位;当b

  .函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()

  将直线y=3x向下平移5个单位,得到直线;将直线y=-x-5向上平移5个单位,得到直线.若直线yxa和直线yxb的交点坐标为(m,8),则ab____________.

  已知函数y=3x+1,当自变量增加m时,相应的函数值增加()A.3m+1B.3mC.mD.3m-111、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),坐标或纵坐标为0的点.

  b>0经过第一、二、三象限b0图象从左到右上升,y随x的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k0时,向上平移;当b

  (1)设一次函数的表达式(也叫解析式)为y=kx+b。(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b①

  和y2=kx2+b②

  (3)解这个二元一次方程,得到k,b的值。(4)最后得到一次函数的表达式。15、一元一次方程与一次函数的关系

  任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.

函数知识点总结10

  教学目标:

  (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

  教学重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  教学难点:求出函数的自变量的取值范围。

  教学过程:

  一、问题引新

  1.设矩形花圃的垂直于墙(墙长18)的一边AB的长为_m,先取_的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

  AB长_(m) 1 2 3 4 5 6 7 8 9

  BC长(m) 12

  面积y(m2) 48

  2._的值是否可以任意取?有限定范围吗?

  3.我们发现,当AB的长(_)确定后,矩形的面积(y)也随之确定,y是_的函数,试写出这个函数的关系式,教师可提出问题,(1)当AB=_m时,BC长等于多少m?(2)面积y等于多少? y=_(20-2_)

  二、提出问题,解决问题

  1、引导学生看书第二页问题一、二

  2、观察概括

  y=6_2 d= n /2 (n-3) y= 20 (1-_)2

  以上函数关系式有什么共同特点? (都是含有二次项)

  3、二次函数定义:形如y=a_2+b_+c(a、b、、c是常数,a≠0)的函数叫做_的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

  4、课堂练习

  (1) (口答)下列函数中,哪些是二次函数?

  (1)y=5_+1 (2)y=4_2-1

  (3)y=2_3-3_2 (4)y=5_4-3_+1

  (2).P3练习第1,2题。

  五、小结叙述二次函数的`定义.

  第二课时:26.1二次函数(2)

  教学目标:

  1、使学生会用描点法画出y=a_2的图象,理解抛物线的有关概念。

  2、使学生经历、探索二次函数y=a_2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯。

  教学重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=a_2的图象

  教学难点:用描点法画出二次函数y=a_2的图象以及探索二次函数性质。

函数知识点总结11

  一次函数知识点总结基本概念

  1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。

  例题:在匀速运动公式svt中,v表示速度,t表示时间,s表示在时间t内所走的路程,则变量是________,常量是_______。在圆的周长公式C=2πr中,变量是________,常量是_________.

  2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

  *判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应

  1-12

  例题:下列函数(1)y=πx(2)y=2x-1(3)y=(4)y=2-3x(5)y=x-1中,是一次函数的有()

  x(A)4个(B)3个(C)2个(D)1个

  3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。(x的取值范围)一次函数

  1..自变量x和因变量y有如下关系:

  y=kx+b(k为任意不为零实数,b为任意实数)则此时称y是x的一次函数。特别的',当b=0时,y是x的正比例函数。即:y=kx(k为任意不为零实数)

  定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际有意义。

  2.当x=0时,b为函数在y轴上的截距。

  一次函数性质:

  1在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

  2一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。3.函数不是数,它是指某一变量过程中两个变量之间的关系。

  特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。4、特殊位置关系

  当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等

  当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)

  应用

  一次函数y=kx+b的性质是:(1)当k>0时,y随x的增大而增大;(2)当kx2B.x10,且y1>y2。根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。故选A。

  判断函数图象的位置

  例3.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限

  C.第三象限D.第四象限

  解:由kb>0,知k、b同号。因为y随x的增大而减小,所以k

  解析式:y=kx(k是常数,k≠0)必过点:(0,0)、(1,k)

  走向:k>0时,图像经过一、三象限;k0,y随x的增大而增大;k0时,向上平移;当b0,图象经过第一、三象限;k0,图象经过第一、二象限;b0,y随x的增大而增大;k0时,将直线y=kx的图象向上平移b个单位;当b

  若直线yxa和直线yxb的交点坐标为(m,8),则ab____________.已知函数y=3x+1,当自变量增加m时,相应的函数值增加()A.3m+1B.3mC.mD.3m-1

  11、一次函数y=kx+b的图象的画法.

  根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图

  象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),坐标或纵坐标为0的点.

  b>0经过第一、二、三象限b0图象从左到右上升,y随x的增大而增大经过第一、二、四象限经过第二、三、四象限经过第二、四象限k0时,向上平移;当b

  某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.

函数知识点总结12

  特别地,二次函数(以下称函数)y=ax+bx+c。

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax+bx+c=0。

  此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

  1.二次函数y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的图象形状相同,只是位置不同。当h>0时,y=a(x-h)的图象可由抛物线y=ax向右平行移动h个单位得到。

  当h<0时,则向xxx移动|h|个单位得到。

  当h>0,k>0时,将抛物线y=ax向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)+k的图象。

  当h>0,k<0时,将抛物线y=ax向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象。

  当h<0,k>0时,将抛物线向xxx移动|h|个单位,再向上移动k个单位可得到y=a(x-h)+k的图象。

  当h<0,k<0时,将抛物线向xxx移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象。

  因此,研究抛物线y=ax+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便。

  2.抛物线y=ax+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b]/4a)。

  3.抛物线y=ax+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的'增大而减小。

  4.抛物线y=ax+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c)。

  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的两根.这两点间的距离AB=|x-x|。

  当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。

  5.抛物线y=ax+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b)/4a。

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax+bx+c(a≠0)。

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)+k(a≠0)。

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a≠0)。

函数知识点总结13

  三角和的公式

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  倍角公式

  tan2A = 2tanA/(1-tan2 A)

  Sin2A=2SinA?CosA

  Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

  三倍角公式

  sin3A = 3sinA-4(sinA)3;

  cos3A = 4(cosA)3 -3cosA

  tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

  三角函数特殊值

  α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

  α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

  a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

  α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

  α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

  α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

  α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

  α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

  α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

  α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

  α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  三角函数记忆顺口溜

  1三角函数记忆口诀

  “奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的.名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。

  以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。

  2符号判断口诀

  全,S,T,C,正。这五个字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。

  也可以这样理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是对应象限三角函数为正值的名称。口诀中未提及的都是负值。

  “ASTC”反Z。意即为“all(全部)”、“sin”、“tan”、“cos”按照将字母Z反过来写所占的象限对应的三角函数为正值。

  3三角函数顺口溜

  三角函数是函数,象限符号坐标注。函数图像单位圆,周期奇偶增减现。

  同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

  中心记上数字一,连结顶点三角形。向下三角平方和,倒数关系是对角,

  顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,

  变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

  将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

  余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

  计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

  逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

  万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

  一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范;

  三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

  利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。

函数知识点总结14

  (一)、映射、函数、反函数

  1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。

  2、对于函数的概念,应注意如下几点:

  (1)掌握构成函数的三要素,会判断两个函数是否为同一函数。

  (2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。

  (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数。

  3、求函数y=f(x)的反函数的一般步骤:

  (1)确定原函数的值域,也就是反函数的定义域;

  (2)由y=f(x)的解析式求出x=f—1(y);

  (3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域。

  注意:

  ①对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起。

  ②熟悉的应用,求f—1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算。

  (二)、函数的解析式与定义域

  1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。求函数的定义域一般有三种类型:

  (1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;

  (2)已知一个函数的解析式求其定义域,只要使解析式有意义即可。如:

  ①分式的分母不得为零;

  ②偶次方根的被开方数不小于零;

  ③对数函数的真数必须大于零;

  ④指数函数和对数函数的底数必须大于零且不等于1;

  ⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等。

  应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集)。

  (3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可。

  已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域。

  2、求函数的解析式一般有四种情况

  (1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式。

  (2)有时题设给出函数特征,求函数的解析式,可采用待定系数法。比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可。

  (3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域。

  (4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(—x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式。

  (三)、函数的值域与最值

  1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:

  (1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。

  (2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。

  (3)反函数法:利用函数f(x)与其反函数f—1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。

  (4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。

  (6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。

  (7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。

  (8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。

  2、求函数的最值与值域的区别和联系

  求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异。

  如函数的值域是(0,16],最大值是16,无最小值。再如函数的值域是(—∞,—2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2。可见定义域对函数的值域或最值的影响。

  3、函数的最值在实际问题中的应用

  函数的`最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值。

  (四)、函数的奇偶性

  1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数)。

  正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=—f(x)或f(—x)=f(x)是定义域上的恒等式。(奇偶性是函数定义域上的整体性质)。

  2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:

  注意如下结论的运用:

  (1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;

  (2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

  (3)奇偶函数的复合函数的奇偶性通常是偶函数;

  (4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。

  3、有关奇偶性的几个性质及结论

  (1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称。

  (2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数。

  (3)若奇函数f(x)在x=0处有意义,则f(0)=0成立。

  (4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。

  (5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(—x)是偶函数,G(x)=f(x)—f(—x)是奇函数。

  (6)奇偶性的推广

  函数y=f(x)对定义域内的任一x都有f(a+x)=f(a—x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数。函数y=f(x)对定义域内的任—x都有f(a+x)=—f(a—x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。

  (五)、函数的单调性

  1、单调函数

  对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1>x2时,都有不等式f(x1)>(或<)f(x2)成立,称f(x)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数。

  对于函数单调性的定义的理解,要注意以下三点:

  (1)单调性是与“区间”紧密相关的概念。一个函数在不同的区间上可以有不同的单调性。

  (2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替。

  (3)单调区间是定义域的子集,讨论单调性必须在定义域范围内。

  (4)注意定义的两种等价形式:

  设x1、x2∈[a,b],那么:

  ①在[a、b]上是增函数;

  在[a、b]上是减函数。

  ②在[a、b]上是增函数。

  在[a、b]上是减函数。

  需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零。

  (5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1>x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”。

  5、复合函数y=f[g(x)]的单调性

  若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减。简称“同增、异减”。

  在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程。

  6、证明函数的单调性的方法

  (1)依定义进行证明。其步骤为:

  ①任取x1、x2∈M且x1(或<)f(x2);

  ②根据定义,得出结论。

  (2)设函数y=f(x)在某区间内可导。

  如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数。

  (六)、函数的图象

  函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识。

  求作图象的函数表达式

  与f(x)的关系

  由f(x)的图象需经过的变换

  y=f(x)±b(b>0)

  沿y轴向平移b个单位

  y=f(x±a)(a>0)

  沿x轴向平移a个单位

  y=—f(x)

  作关于x轴的对称图形

  y=f(|x|)

  右不动、左右关于y轴对称

  y=|f(x)|

  上不动、下沿x轴翻折

  y=f—1(x)

  作关于直线y=x的对称图形

  y=f(ax)(a>0)

  横坐标缩短到原来的,纵坐标不变

  y=af(x)

  纵坐标伸长到原来的|a|倍,横坐标不变

  y=f(—x)

  作关于y轴对称的图形

  【例】定义在实数集上的函数f(x),对任意x,y∈R,有f(x+y)+f(x—y)=2f(x)·f(y),且f(0)≠0。

  ①求证:f(0)=1;

  ②求证:y=f(x)是偶函数;

  ③若存在常数c,使求证对任意x∈R,有f(x+c)=—f(x)成立;试问函数f(x)是不是周期函数,如果是,找出它的一个周期;如果不是,请说明理由。

  思路分析:我们把没有给出解析式的函数称之为抽象函数,解决这类问题一般采用赋值法。

  解答:①令x=y=0,则有2f(0)=2f2(0),因为f(0)≠0,所以f(0)=1。

  ②令x=0,则有f(x)+f(—y)=2f(0)·f(y)=2f(y),所以f(—y)=f(y),这说明f(x)为偶函数。

  ③分别用(c>0)替换x、y,有f(x+c)+f(x)=

  所以,所以f(x+c)=—f(x)。

  两边应用中的结论,得f(x+2c)=—f(x+c)=—[—f(x)]=f(x),所以f(x)是周期函数,2c就是它的一个周期。

函数知识点总结15

  f(x2),那么那么y=f(x)在区间D上是减函数,D是函数y=f(x)的单调递减区间。

  ⑴函数区间单调性的判断思路

  ⅰ在给出区间内任取x1、x2,则x1、x2∈D,且x1

  ⅱ做差值f(x1)-f(x2),并进行变形和配方,变为易于判断正负的形式。

  ⅲ判断变形后的表达式f(x1)-f(x2)的符号,指出单调性。

  ⑵复合函数的单调性

  复合函数y=f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律为“同增异减”;多个函数的复合函数,根据原则“减偶则增,减奇则减”。

  ⑶注意事项

  函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成并集,如果函数在区间A和B上都递增,则表示为f(x)的单调递增区间为A和B,不能表示为A∪B。

  2、函数的整体性质——奇偶性

  对于函数f(x)定义域内的任意一个x,都有f(x) =f(-x),则f(x)就为偶函数;

  对于函数f(x)定义域内的任意一个x,都有f(x) =-f(x),则f(x)就为奇函数。

  小编推荐:高中数学必考知识点归纳总结

  ⑴奇函数和偶函数的性质

  ⅰ无论函数是奇函数还是偶函数,只要函数具有奇偶性,该函数的定义域一定关于原点对称。

  ⅱ奇函数的图像关于原点对称,偶函数的图像关于y轴对称。

  ⑵函数奇偶性判断思路

  ⅰ先确定函数的定义域是否关于原点对称,若不关于原点对称,则为非奇非偶函数。

  ⅱ确定f(x)和f(-x)的关系:

  若f(x) -f(-x)=0,或f(x) /f(-x)=1,则函数为偶函数;

  若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,则函数为奇函数。

  3、函数的最值问题

  ⑴对于二次函数,利用配方法,将函数化为y=(x-a)2+b的'形式,得出函数的最大值或最小值。

  ⑵对于易于画出函数图像的函数,画出图像,从图像中观察最值。

  ⑶关于二次函数在闭区间的最值问题

  ⅰ判断二次函数的顶点是否在所求区间内,若在区间内,则接ⅱ,若不在区间内,则接ⅲ。

  ⅱ若二次函数的顶点在所求区间内,则在二次函数y=ax2+bx+c中,a>0时,顶点为最小值,a0时的最大值或a

  ⅲ若二次函数的顶点不在所求区间内,则判断函数在该区间的单调性

  若函数在[a,b]上递增,则最小值为f(a),最大值为f(b);

  若函数在[a,b]上递减,则最小值为f(b),最大值为f(a)。

  3高一数学基本初等函数1、指数函数:函数y=ax (a>0且a≠1)叫做指数函数

  a的取值a>1 0

  注意:⑴由函数的单调性可以看出,在闭区间[a,b]上,指数函数的最值为:

  a>1时,最小值f(a),最大值f(b);0

  ⑵对于任意指数函数y=ax (a>0且a≠1),都有f(1)=a。

  2、对数函数:函数y=logax(a>0且a≠1)),叫做对数函数

  a的取值a>1 0

  3、幂函数:函数y=xa(a∈R),高中阶段,幂函数只研究第I象限的情况。

  ⑴所有幂函数都在(0,+∞)区间内有定义,而且过定点(1,1)。

  ⑵a>0时,幂函数图像过原点,且在(0,+∞)区间为增函数,a越大,图像坡度越大。

  ⑶a

  当x从右侧无限接近原点时,图像无限接近y轴正半轴;

  当y无限接近正无穷时,图像无限接近x轴正半轴。

  幂函数总图见下页。

  4、反函数:将原函数y=f(x)的x和y互换即得其反函数x=f-1(y)。

  反函数图像与原函数图像关于直线y=x对称。

【函数知识点总结】相关文章:

函数知识点总结02-10

函数知识点总结06-23

[精华]函数知识点总结08-28

函数知识点总结(精)08-21

(精品)函数知识点总结08-22

(精)函数知识点总结08-25

(精)函数知识点总结08-25

函数知识点总结【热门】08-21

[集合]函数知识点总结09-19

函数知识点总结(热门)09-19