函数知识点总结

时间:2024-09-22 13:00:51 知识点总结 我要投稿

函数知识点总结15篇(合集)

  总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以使我们更有效率,快快来写一份总结吧。总结怎么写才能发挥它的作用呢?下面是小编帮大家整理的函数知识点总结,欢迎阅读,希望大家能够喜欢。

函数知识点总结15篇(合集)

函数知识点总结1

  一次函数:一次函数图像与性质是中考必考的内容之一。中考试题中分值约为10分左右题型多样,形式灵活,综合应用性强。甚至有存在探究题目出现。

  主要考察内容:

  ①会画一次函数的图像,并掌握其性质。

  ②会根据已知条件,利用待定系数法确定一次函数的解析式。

  ③能用一次函数解决实际问题。

  ④考察一ic函数与二元一次方程组,一元一次不等式的关系。

  突破方法:

  ①正确理解掌握一次函数的概念,图像和性质。

  ②运用数学结合的思想解与一次函数图像有关的问题。

  ③掌握用待定系数法球一次函数解析式。

  ④做一些综合题的训练,提高分析问题的能力。

  函数性质:

  1.y的变化值与对应的x的变化值成正比例,比值为k.即:y=kx+b(k,b为常数,k≠0),∵当x增加m,k(x+m)+b=y+km,km/m=k。

  2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。

  3当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。

  4.在两个一次函数表达式中:

  当两一次函数表达式中的k相同,b也相同时,两一次函数图像重合;当两一次函数表达式中的k相同,b不相同时,两一次函数图像平行;当两一次函数表达式中的k不相同,b不相同时,两一次函数图像相交;当两一次函数表达式中的.k不相同,b相同时,两一次函数图像交于y轴上的同一点(0,b)。若两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0)则称y是x的一次函数图像性质

  1、作法与图形:通过如下3个步骤:

  (1)列表.

  (2)描点;[一般取两个点,根据“两点确定一条直线”的道理,也可叫“两点法”。一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。

  正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点。(3)连线,可以作出一次函数的图象一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。(通常找函数图象与x轴和y轴的交点分别是-k分之b与0,0与b).

  2、性质:

  (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。

  (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。

  3、函数不是数,它是指某一变化过程中两个变量之间的关系。

  4、k,b与函数图像所在象限:

  y=kx时(即b等于0,y与x成正比例):

  当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k0,b>0,这时此函数的图象经过第一、二、三象限;当k>0,b

函数知识点总结2

  反比例函数的表达式

  X是自变量,Y是X的函数

  y=k/x=k·1/x

  xy=k

  y=k·x^(-1)(即:y等于x的负一次方,此处X必须为一次方)

  y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n

  函数式中自变量取值的范围

  ①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。  解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数

  y=k/x=k·1/x  xy=k  y=k·x^(-1)  y=kx(k为常数(k≠0),x不等于0)

  反比例函数图象

  反比例函数的图像属于以原点为对称中心的中心对称的'双曲线,反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

  反比例函数中k的几何意义是什么?有哪些应用

  过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值*y的绝对值=(x*y)的绝对值=|k|

  研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。

  所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

函数知识点总结3

  一次函数y=kx+b的性质:(一次函数的图像是一条直线)

  1、一次函数ykxb(k0)经过(0,与y轴)点,(,0)点.与x轴交点坐标是(,0)交点坐标是(0,)。

  2、k的正、负决定直线的倾斜方向

  当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

  3、|k|的.大小决定直线的倾斜程度

  |k|越大,直线与x轴相交的锐角度数越大(直线陡);|k|越小,直线与x轴相交的锐角度数越小(直线缓);

  4、b的正负决定直线与y轴交点的位置当b>0时,直线与y轴交于y轴正半轴上;当b<0时,直线与y轴交于y轴负半轴上;当b=0时,直线经过原点。

  5、k、b的符号不同,直线经过的象限也不同。

  当k>0时,直线经过一、三象限;当k<0时,图像经过二、四象限。进一步:

  当k>0,b>0时,直线经过一、二、三象限(不经过第四象限)当k>0,b<0时,直线经过一、三、四象限(不经过第二象限)当k>0,b=0时,直线经过一、三、象限和原点

  当k<0,b>0时,直线经过一、二、四象限(不经过第三象限)当k<0,b<0时,直线经过二、三、四象限(不经过第一象限)当k<0,b=0时,直线经过二、四、象限和原点

  反过来:不经过第一象限指:经过二、三、四象限或经过二四象限和原点。其它类似。

函数知识点总结4

  一、函数对称性:

  1.2.3.4.5.6.7.8.

  f(a+x)=f(a-x)==>f(x)关于x=a对称

  f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称

  f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称

  例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。

  【解析】求两个不同函数的对称轴,用设点和对称原理作解。

  证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)]

  ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.

  例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。

  证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b]

  ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.

  二、函数的周期性

  令a,b均不为零,若:

  1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|

  2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|

  3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|

  4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|

  5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|

  这里只对第2~5点进行解析。

  第2点解析:

  令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba

  第3点解析:同理,f(x+a)=-f(x+2a)……

  ①f(x)=-f(x+a)……

  ②∴由①和②解得f(x)=f(x+2a)∴函数最小正周期T=|2a|

  第4点解析:

  f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)

  又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)

  ∴函数最小正周期T=|2a|

  第5点解析:

  ∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1

  ∴1f(x)=2/[f(x)+1]移项得f(x)=12/[f(x+a)+1]

  那么f(x-a)=12/[f(x)+1],等式右边通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,

  由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)

  ∴函数最小正周期T=|4a|

  扩展阅读:函数对称性、周期性和奇偶性的规律总结

  函数对称性、周期性和奇偶性规律总结

  (一)同一函数的'函数的奇偶性与对称性:(奇偶性是一种特殊的对称性)

  1、奇偶性:

  (1)奇函数关于(0,0)对称,奇函数有关系式f(x)f(x)0

  (2)偶函数关于y(即x=0)轴对称,偶函数有关系式f(x)f(x)

  2、奇偶性的拓展:同一函数的对称性

  (1)函数的轴对称:

  函数yf(x)关于xa对称f(ax)f(ax)

  f(ax)f(ax)也可以写成f(x)f(2ax)或f(x)f(2ax)

  若写成:f(ax)f(bx),则函数yf(x)关于直线x称

  (ax)(bx)ab对22证明:设点(x1,y1)在yf(x)上,通过f(x)f(2ax)可知,y1f(x1)f(2ax1),

  即点(2ax1,y1)也在yf(x)上,而点(x1,y1)与点(2ax1,y1)关于x=a对称。得证。

  说明:关于xa对称要求横坐标之和为2a,纵坐标相等。

  ∵(ax1,y1)与(ax1,y1)关于xa对称,∴函数yf(x)关于xa对称

  f(ax)f(ax)

  ∵(x1,y1)与(2ax1,y1)关于xa对称,∴函数yf(x)关于xa对称

  f(x)f(2ax)

  ∵(x1,y1)与(2ax1,y1)关于xa对称,∴函数yf(x)关于xa对称

  f(x)f(2ax)

  (2)函数的点对称:

  函数yf(x)关于点(a,b)对称f(ax)f(ax)2b

  上述关系也可以写成f(2ax)f(x)2b或f(2ax)f(x)2b

  若写成:f(ax)f(bx)c,函数yf(x)关于点(abc,)对称2证明:设点(x1,y1)在yf(x)上,即y1f(x1),通过f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以点(2ax1,2by1)也在yf(x)上,而点(2ax1,2by1)与(x1,y1)关于(a,b)对称。得证。

  说明:关于点(a,b)对称要求横坐标之和为2a,纵坐标之和为2b,如(ax)与(ax)之和为2a。

  (3)函数yf(x)关于点yb对称:假设函数关于yb对称,即关于任一个x值,都有两个y值与其对应,显然这不符合函数的定义,故函数自身不可能关于yb对称。但在曲线c(x,y)=0,则有可能会出现关于yb对称,比如圆c(x,y)x2y240它会关于y=0对称。

  (4)复合函数的奇偶性的性质定理:

  性质1、复数函数y=f[g(x)]为偶函数,则f[g(-x)]=f[g(x)]。复合函数y=f[g(x)]为奇函数,则f[g(-x)]=-f[g(x)]。

  性质2、复合函数y=f(x+a)为偶函数,则f(x+a)=f(-x+a);复合函数y=f(x+a)为奇函数,则f(-x+a)=-f(a+x)。

  性质3、复合函数y=f(x+a)为偶函数,则y=f(x)关于直线x=a轴对称。复合函数y=f(x+a)为奇函数,则y=f(x)关于点(a,0)中心对称。

  总结:x的系数一个为1,一个为-1,相加除以2,可得对称轴方程

  总结:x的系数一个为1,一个为-1,f(x)整理成两边,其中一个的系数是为1,另一个为-1,存在对称中心。

  总结:x的系数同为为1,具有周期性。

  (二)两个函数的图象对称性

  1、yf(x)与yf(x)关于X轴对称。

  证明:设yf(x)上任一点为(x1,y1)则y1f(x1),所以yf(x)经过点(x1,y1)

  ∵(x1,y1)与(x1,y1)关于X轴对称,∴y1f(x1)与yf(x)关于X轴对称.注:换种说法:yf(x)与yg(x)f(x)若满足f(x)g(x),即它们关于y0对称。

函数知识点总结5

  (一)函数

  1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。

  2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。一个X对应两个Y值是错误的x判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应;

  3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

  4、确定函数定义域的方法:

  (1)关系式为整式时,函数定义域为全体实数;

  (2)关系式含有分式时,分式的分母不等于零;

  (3)关系式含有二次根式时,被开放方数大于等于零;

  (4)关系式中含有指数为零的式子时,底数不等于零;

  (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

  5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式

  6、函数的图像(函数图像上的点一定符合函数表达式,符合函数表达式的点一定在函数图像上)

  一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象;

  运用:求解析式中的参数、求函数解释式;

  7、描点法画函数图形的一般步骤

  第一步:列表(表中给出一些自变量的值及其对应的函数值);函数表达式为y=3X-2-1-20xx-6-3-6036

  第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);

  第三步:连线(按照横坐标由小到大的顺序把所描出的.各点用平滑曲线连接起来)。

  8、函数的表示方法

  列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

  解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

  图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

  (二)一次函数1、一次函数的定义

  一般地,形如ykxb(k,b是常数(其中k与b的形式较为灵活,但只要抓住函数基本形式,准确找到k与b,根据题意求的常数的取值范围),且k0)的函数,叫做一次函数,其中x是自变量。当b0时,一次函数ykx,又叫做正比例函数。

  ⑴一次函数的解析式的形式是ykxb,要判断一个函数是否是一次函数,就是判断是否能化成以上形式;

  ⑵当b0,k0时,ykx仍是一次函数;

  ⑶当b0,k0时,它不是一次函数;

  ⑷正比例函数是一次函数的特例,一次函数包括正比例函数;

  2、正比例函数及性质

  一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx(k不为零)①k不为零②x指数为1③b取零

  当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k0时,图像经过一、三象限;k0,y随x的增大而增大;k0时,向上平移;当b0,y随x的增大而增大();k4、一次函数y=kx+b的图象的画法.

  在实际做题中只需要俩点就可以确定函数图像,一般我们令X=0求出阿Y的值再令Y=0求出X的值.如图

  y=kx+b(0,b)解析:(两点确定一条直线,这两点我们一般确定在坐标轴上,因为X轴上所有坐标点的纵坐标为0即(x,0)Y轴上所有点的

  (-b/k,0)横坐标为0即(0,y)这样作图既快又准确

  5、正比例函数与一次函数之间的关系

  一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b0时,直线经过一、三象限;k0,y随x的增大而增大;(从左向右上升)k0时,将直线y=kx的图象向上平移b个单位;b。

函数知识点总结6

  第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。

  在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。复合函数要注意外层函数的定义域由内层函数的值域决定。

  第二、带绝对值的函数单调性判断错误带绝对值的函数实质上就是分段函数,判断分段函数的单调性有两种方法:第一,在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,然后对各个段上的单调区间进行整合;第二,画出这个分段函数的`图象,结合函数图象、性质能够进行直观的判断。函数题离不开函数图象,而函数图象反应了函数的所有性质,考生在解答函数题时,要第一时间在脑海中画出函数图象,从图象上分析问题,解决问题。

  对于函数不同的单调递增(减)区间,千万记住,不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。

  第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。

  在用定义进行判断时,要注意自变量在定义域区间内的任意性。

  第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的性质去解决抽象函数。多用特殊赋值法,通过特殊赋可以找到函数的不变性质,这往往是问题的突破口。

  抽象函数性质的证明属于代数推理,和几何推理证明一样,考生在作答时要注意推理的严谨性。每一步都要有充分的条件,别漏掉条件,更不能臆造条件,推理过程层次分明,还要注意书写规范。

  第五、函数零点定理使用不当若函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)f(b)<0。那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0。这个c也可以是方程f(c)=0的根,称之为函数的零点定理,分为“变号零点”和“不变号零点”,而对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时,考生需格外注意这类问题。

  第六、混淆两类切线曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。

  因此,考生在求解曲线的切线问题时,首先要区分是什么类型的切线。

  第七、混淆导数与单调性的关系一个函数在某个区间上是增函数的这类题型,如果考生认为函数的导函数在此区间上恒大于0,很容易就会出错。

  解答函数的单调性与其导函数的关系时一定要注意,一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。

  第八、导数与极值关系不清考生在使用导数求函数极值类问题时,容易出现的错误就是求出使导函数等于0的点,却没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点,往往就会出错,出错原因就是考生对导数与极值关系没搞清楚。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,小编在此提醒广大考生,在使用导数求函数极值时,一定要对极值点进行仔细检查。

函数知识点总结7

  k0时,y随x的增大而减小,直线一定过二、四象限(3)若直线l1:yk1xb1l2:yk2xb2

  当k1k2时,l1//l2;当b1b2b时,l1与l2交于(0,b)点。

  (4)当b>0时直线与y轴交于原点上方;当b学大教育

  (1)是中心对称图形,对中称心是原点(2)对称性:是轴直线yx和yx(2)是轴对称图形,对称k0时两支曲线分别位于一、三象限且每一象限内y随x的增大而减小(3)

  k0时两支曲线分别位于二、四象限且每一象限内y随x的增大而增大(4)过图象上任一点作x轴与y轴的垂线与坐标轴构成的矩形面积为|k|。

  P(1)应用在u3.应用(2)应用在(3)其它F上SS上t其要点是会进行“数结形合”来解决问题二、二次函数

  1.定义:应注意的问题

  (1)在表达式y=ax2+bx+c中(a、b、c为常数且a≠0)(2)二次项指数一定为22.图象:抛物线

  3.图象的性质:分五种情况可用表格来说明表达式(1)y=ax2顶点坐标对称轴(0,0)最大(小)值y最小=0y最大=0(2)y=ax2+c(0,0)y最小=0y最大=0(3)y=a(x-(h,0)h)2直线x=hy最小=0y最大=0y随x的变化情况随x增大而增大随x增大而减小随x的增大而增大随x的增大而减小随x的增大而增大随x的增大而减小直线x=0(y轴)①若a>0,则x=0时,若a>0,则x>0时,y②若a0,则x=0时,①若a>0,则x>0时,y②若a0,则x=h时,①若a>0,则x>h时,y②若a学大教育

  表达式h)2+k顶点坐标对称轴直线x=h最大(小)值y最小=ky最大=k(5)y=ax2+b(x+cb2ay随x的变化情况随x的增大而增大随x的增大而减小b2a时,①若a>0,则x>b2a(4)y=a(x-(h,k)①若a>0,则x=h时,①若a>0,则x>h时,y②若a0,则x=4acb24ay最小=4acb24ab时,y随x的增大而增大时,②若a2a2a时,y随x的增大而减小b②若a学大教育

  一次函数图象和性质

  【知识梳理】

  1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0).2.一次函数ykxb的图象是经过(3.一次函数ykxb的图象与性质

  图像的大致位置经过象限第象限第象限第象限第象限y随x的增大y随x的增大而y随x的增大y随x的增大性质而而而而

  【思想方法】数形结合

  k、b的符号k>0,b>0k>0,b<0k<0,b>0k<0,b<0b,0)和(0,b)两点的一条直线.k反比例函数图象和性质

  【知识梳理】

  1.反比例函数:一般地,如果两个变量x、y之间的关系可以表示成y=或(k为常数,k≠0)的形式,那么称y是x的反比例函数.2.反比例函数的图象和性质

  k的符号k>0yoxk<0yox

  图像的大致位置经过象限性质

  第象限在每一象限内,y随x的增大而第象限在每一象限内,y随x的'增大而3.k的几何含义:反比例函数y=的几何意义,即过双曲线y=

  k(k≠0)中比例系数kxk(k≠0)上任意一点P作x4

  x轴、y轴垂线,设垂足分别为A、B,则所得矩形OAPB

  函数学习方法学大教育

  的面积为.

  【思想方法】数形结合

  二次函数图象和性质

  【知识梳理】

  1.二次函数ya(xh)2k的图像和性质

  图象开口对称轴顶点坐标最值增减性

  在对称轴左侧在对称轴右侧当x=时,y有最值y随x的增大而y随x的增大而a>0yOa<0x当x=时,y有最值y随x的增大而y随x的增大而锐角三角函数

  【思想方法】

  1.常用解题方法设k法2.常用基本图形双直角

  【例题精讲】例题1.在△ABC中,∠C=90°.(1)若cosA=

  14,则tanB=______;(2)若cosA=,则tanB=______.255

  函数学习方法学大教育

  例题2.(1)已知:cosα=

  23,则锐角α的取值范围是()A.0°

函数知识点总结8

  1.常量和变量

  在某变化过程中可以取不同数值的量,叫做变量.在某变化过程中保持同一数值的量或数,叫常量或常数.

  2.函数

  设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.

  3.自变量的取值范围

  (1)整式:自变量取一切实数.(2)分式:分母不为零.

  (3)偶次方根:被开方数为非负数.

  (4)零指数与负整数指数幂:底数不为零.

  4.函数值

  对于自变量在取值范围内的一个确定的值,如当x=a时,函数有唯一确定的对应值,这个对应值,叫做x=a时的函数值.

  5.函数的表示法

  (1)解析法;(2)列表法;(3)图象法.

  6.函数的图象

  把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个函数的图象.由函数解析式画函数图象的步骤:

  (1)写出函数解析式及自变量的取值范围;

  (2)列表:列表给出自变量与函数的一些对应值;

  (3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;

  (4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来.

  7.一次函数

  (1)一次函数

  如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.

  特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.

  (2)一次函数的图象

  一次函数y=kx+b的图象是一条经过(0,b)点和点的直线.特别地,正比例函数图象是一条经过原点的直线.需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象.

  (3)一次函数的性质

  当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.直线y=kx+b与y轴的交点坐标为(0,b),与x轴的.交点坐标为.

  (4)用函数观点看方程(组)与不等式

  ①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标.

  ②二元一次方程组对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.

  ③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.

  8.反比例函数(1)反比例函数

  (1)如果(k是常数,k≠0),那么y叫做x的反比例函数.

  (2)反比例函数的图象反比例函数的图象是双曲线.

  (3)反比例函数的性质

  ①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.

  ②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.

  ③反比例函数图象关于直线y=±x对称,关于原点对称.

  (4)k的两种求法

  ①若点(x0,y0)在双曲线上,则k=x0y0.②k的几何意义:

  若双曲线上任一点A(x,y),AB⊥x轴于B,则S△AOB

  (5)正比例函数和反比例函数的交点问题

  若正比例函数y=k1x(k1≠0),反比例函数,则当k1k2<0时,两函数图象无交点;

  当k1k2>0时,两函数图象有两个交点,坐标分别为由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.

  1.二次函数

  如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x的二次函数.

  几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0).

  2.二次函数的图象

  二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线.由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象.

  3.二次函数的性质

  二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质:

  (1)抛物线y=ax2+bx+c的顶点是,对称轴是直线,顶点必在对称轴上;

  (2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的任意一点(x,y),当x<时,y随x的增大而减小;当x>时,y随x的增大而增大;当x=,y有最小值;若a<0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任意一点(x,y),当x<,y随x的增大而增大;当时,y随x的增大而减小;当x=时,y有最大值;

  (3)抛物线y=ax2+bx+c与y轴的交点为(0,c);

  (4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+bx+c与x轴交点的情况:

  <0时,抛物线y=ax2+bx+c与x轴没有公共点.=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点;当=b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个不同的公共点,它们的坐标分别是和,这两点的距离为;当当4.抛物线的平移

  抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)、向左(右)平移,可以得到抛物线y=a(x-h)2+k.平移的方向、距离要根据h、k的值来决定.

函数知识点总结9

  一次函数的定义

  一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。当b=0时,一次函数y=kx,又叫做正比例函数。

  1、一次函数的解析式的形式是y=kx+b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式。

  2、当b=0,k≠0时,y=kx仍是一次函数。

  3、当k=0,b≠0时,它不是一次函数。

  4、正比例函数是一次函数的特例,一次函数包括正比例函数。

  一次函数的图像及性质

  1、在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

  2、一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)。

  3、正比例函数的图像总是过原点。

  4、k,b与函数图像所在象限的关系:

  当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

  当k>0,b>0时,直线通过一、二、三象限;

  当k>0,b<0时,直线通过一、三、四象限;

  当k<0,b>0时,直线通过一、二、四象限;

  当k<0,b<0时,直线通过二、三、四象限;

  当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

  一次函数的图象与性质的口诀

  一次函数是直线,图象经过三象限;

  正比例函数更简单,经过原点一直线;

  两个系数k与b,作用之大莫小看,

  k是斜率定夹角,b与y轴来相见,

  k为正来右上斜,x增减y增减;

  k为负来左下展,变化规律正相反;

  k的绝对值越大,线离横轴就越远。

  拓展阅读:一次函数的解题方法

  理解一次函数和其它知识的联系

  一次函数和代数式以及方程有着密不可分的联系。如一次函数和正比例函数仍然是函数,同时,等号的两边又都是代数式。需要注意的是,与一般代数式有很大区别。首先,一次函数和正比例函数都只能存在两个变量,而代数式可以是多个变量;其次,一次函数中的变量指数只能是1,而代数式中变量指数还可以是1以外的数。另外,一次函数解析式也可以理解为二元一次方程。

  掌握一次函数的解析式的特征

  一次函数解析式的结构特征:kx+b是关于x的`一次二项式,其中常数b可以是任意实数,一次项系数k必须是非零数,k≠0,因为当k = 0时,y = b(b是常数),由于没有一次项,这样的函数不是一次函数;而当b = 0,k≠0,y = kx既是正比例函数,也是一次函数。

  应用一次函数解决实际问题

  1、分清哪些是已知量,哪些是未知量,尤其要弄清哪两种量是相关联的量,且其中一种量因另一种量的变化而变化;

  2、找出具有相关联的两种量的等量关系之后,明确哪种量是另一种量的函数;

  3、在实际问题中,一般存在着三种量,如距离、时间、速度等等,在这三种量中,当且仅当其中一种量时间(或速度)不变时,距离与速度(或时间)才成正比例,也就是说,距离(s)是时间(t)或速度( )的正比例函数;

  4、求一次函数与正比例函数的关系式,一般采取待定系数法。

  数形结合

  方程,不等式,不等式组,方程组我们都可以用一次函数的观点来理解。一元一次不等式实际上就看两条直线上下方的关系,求出端点后可以很容易把握解集,至于一元一次方程可以把左右两边看为两条直线来认识,直线交点的横坐标就是方程的解,至于二元一次方程组就是对应2条直线,方程组的解就是直线的交点,结合图形可以认识两直线的位置关系也可以把握交点个数。

  如果一个交点时候两条直线的k不同,如果无穷个交点就是k,b都一样,如果平行无交点就是k相同,b不一样。至于函数平移的问题可以化归为对应点平移。k反正不变然后用待定系数法得到平移后的方程。这就是化一般为特殊的解题方法。

函数知识点总结10

  一、知识导学

  1.二次函数的概念、图像和性质.(1)注意解题中灵活运用二次函数的一般式二次函数的顶点式二次函数的坐标式

  f(x)ax2bxcf(x)a(xm)2n(a0)和f(x)a(xx1)(xx2)(a0)

  (a0)

  (2)解二次函数的问题(如单调性、最值、值域、二次三项式的恒正恒负、二次方程根的范围等)要充分利用好两种方法:配方、图像,很多二次函数都用数形结合的思想去解.

  ①

  f(x)ax2bxc(a0),当b24ac0时图像与x轴有两个交点.

  M(x1,0)N(x2,0),|MN|=|x1-x2|=

  .|a|②二次函数在闭区间上必有最大值和最小值,它只能在区间的端点或二次函数的顶点处取得.2.指数函数

  ①amyax(a0,a1)和对数函数ylogax(a0,a1)的概念和性质.

  (1)有理指数幂的意义、幂的运算法则:

  anamn;②(am)namn;③(ab)nanbn(这时m,n是有理数)

  MlogaMlogaNNlogcb1MlogaM;logab

  nlogcaloga对数的概念及其运算性质、换底公式.

  loga(MN)logaMlogaN;logaMnnlogaM;logan(2)指数函数的图像、单调性与特殊点.对数函数的图像、单调性与特殊点.

  ①指数函数图像永远在x轴上方,当a>1时,图像越接近y轴,底数a越大;当0错解:∵18

  5,∴log185b

  log1845log185log189ba∴log3645log1836log184log189log184a5,∴log185b

  log1845log185log189∴log3645log1836log184log189bb错因:因对性质不熟而导致题目没解完.正解:∵18

  bababa

  182182alog18()a2log18()a992[例2]分析方程f(x)axbxc0(a0)的两个根都大于1的充要条件.

  2错解:由于方程f(x)axbxc0(a0)对应的二次函数为

  f(x)ax2bxc的图像与x轴交点的横坐标都大于1即可.

  f(1)0f(1)0故需满足b,所以充要条件是b

  112a2a错因:上述解法中,只考虑到二次函数与x轴交点坐标要大于1,却忽视了最基本的.的前题条件,应让二次函数图像与x轴有

  交点才行,即满足△≥0,故上述解法得到的不是充要条件,而是必要不充分条件.

  f(1)0b正解:充要条件是12a2b4ac0y36x126x5的单调区间.

  x2xx错解:令6t,则y361265=t12t5

  [例3]求函数

  ∴当t≥6,即x≥1时,y为关于t的增函数,当t≤6,即x≤1时,y为关于t的减函数∴函数

  y36x126x5的单调递减区间是(,6],单调递增区间为[6,)

  x错因:本题为复合函数,该解法未考虑中间变量的取值范围.正解:令6∴函数

  t,则t6x为增函数,y36x126x5=t212t5=(t6)241

  ∴当t≥6,即x≥1时,y为关于t的增函数,当t≤6,即x≤1时,y为关于t的减函数

  y36x126x5的单调递减区间是(,1],单调递增区间为[1,)

  [例4]已知yloga(2ax)在[0,1]上是x的减函数,则a的取值范围是错解:∵yloga(2ax)是由ylogau,u2ax复合而成,又a>0∴u2ax在[0,1]上是x的减函数,由复合函数关系知,ylogau应为增函数,∴a>1

  错因:错因:解题中虽然考虑了对数函数与一次函数复合关系,却忽视了数定义域的限制,单调区间应是定义域的某个子区间,即函数应在[0,1]上有意义.

  yloga(2ax)是由ylogau,u2ax复合而成,又a>0∴u2ax在[0,1]上是x的减函数,

  由复合函数关系知,ylogau应为增函数,∴a>1

  又由于x在[0,1]上时yloga(2ax)有意义,u2ax又是减函数,∴x=1时,u2ax取最小值是

  正解:∵

  umin2a>0即可,∴a<2,综上可知所求的取值范围是1<a<2[例5]已知函数f(x)loga(3ax).

  (1)当x[0,2]时f(x)恒有意义,求实数a的取值范围.

  (2)是否存在这样的实数a使得函数f(x)在区间[1,2]上为减函数,并且最大值为

  存在,请说明理由.分析:函数

  1,如果存在,试求出a的值;如果不

  f(x)为复合函数,且含参数,要结合对数函数的性质具体分析找到正确的解题思路,是否存在性问题,分析时一

  0,a1

  般先假设存在后再证明.

  解:(1)由假设,3ax>0,对一切x[0,2]恒成立,a显然,函数g(x)=3ax在[0,2]上为减函数,从而g(2)=32a>0得到a<(2)假设存在这样的实数a,由题设知∴a=

  32∴a的取值范围是(0,1)∪(1,

  32)

  f(1)1,即f(1)loga(3a)=1

  32此时

  f(x)loga(33x)当x2时,f(x)没有意义,故这样的实数不存在.2,

  12x4xa[例6]已知函数f(x)=lg,其中a为常数,若当x∈(-∞,1]时,f(x)有意义,求实数a的取值范围.

  a2a1xx3111xx解:124a>0,且a-a+1=(a-)+>0,∴1+2+4a>0,a>(11),当x∈(-∞,1]时,y=x与y=x都

  24424x2xa2a1333是减函数,∴y=(11)在(-∞,1]上是增函数,(11)max=-,∴a>-,故a的取值范围是(-,+∞).

  4444x2x422

  2

  xx[例7]若(a1)解:∵幂函数

  13(32a)1313,试求a的取值范围.

  yx有两个单调区间,

  ∴根据a1和32a的正、负情况,有以下关系a10a1032a0.①32a0.②a132aa132a解三个不等式组:①得

  a10.③32a023,

  23<a<

  32,②无解,③a<-1,∴a的取值范围是(-∞,-1)∪(

  32)

  [例8]已知a>0且a≠1,f(logax)=

  a1(x-

  xa21)

  (1)求f(x);(2)判断f(x)的奇偶性与单调性;

  2

  (3)对于f(x),当x∈(-1,1)时,有f(1-m)+f(1-m)<0,求m的集合M.

  分析:先用换元法求出f(x)的表达式;再利用有关函数的性质判断其奇偶性和单调性;然后利用以上结论解第三问.解:(1)令t=logax(t∈R),则xat,f(t)aatt(aa),f(x)(axax),(xR).22a1a1aa(axax)f(x),且xR,f(x)为奇函数.当a1时,20,a1a1u(x)axax为增函数,当0a1时,类似可判断f(x)为增函数.综上,无论a1或0a1,f(x)在R上都是增函数.

  (3)f(1m)f(1m2)0,f(x)是奇函数且在R上是增函数,f(1m)f(m21).又x(1,1)(2)f(x)211m11m2111m2.1mm21四、典型习题导练1.函数

  f(x)axb的图像如图,其中a、b为常数,则下列结论正确的是()A.a1,b0B.a1,b0C.0a1,b0D.0a1,b0

  x的值为()

  yC.1或4C.2

  2

  2、已知2lg(x-2y)=lgx+lgy,则A.13、方程loga(x1)xA.04、函数f(x)与g(x)=(

  2B.4B.1

  x

  D.4或8D.3

  ()

  2(0A.

  0,nB.,0C.

  0,2

  D.

  2,0

  5、图中曲线是幂函数y=x在第一象限的图像,已知n可取±2,±

  1四个值,则相应于曲线c1、c2、c3、c4的n依次为()211111111A.-2,-,,2B.2,,-,-2C.-,-2,2,D.2,,-2,-

  2222226.求函数y=log2

  2(x-5x+6)的定义域、值域、单调区间.7.若x满足2(log21x)14log4x30,求f(x)=logxx222log22最大值和最小值.

  8.已知定义在R上的函数f(x)2xa2x,a为常数(1)如果f(x)=f(x),求a的值;

  (2)当

  f(x)满足(1)时,用单调性定义讨论f(x)的单调性.

  基本初等函数综合训练B组

  一、选择题

  1.若函数

  f(x)logax(0a1)在区间[a,2a]上的最大值是最小值的3倍,则a的值为()

  A.214B.22C.4D.12

  2.若函数yloga(xb)(a0,a1)的图象过两点(1,0)

  和(0,1),则()

  A.a2,b2B.a2,b2

  C.a2,b1D.a2,b23.已知f(x6)log2x,那么f(8)等于()

  A.43B.8C.18D.12

  4.函数ylgx()

  A.是偶函数,在区间(,0)上单调递增B.是偶函数,在区间(,0)上单调递减C.是奇函数,在区间(0,)上单调递增D.是奇函数,在区间(0,)上单调递减

  5.已知函数f(x)lg1x1x.若f(a)b.则f(a)()A.bB.bC.11bD.b

  6.函数f(x)logax1在(0,1)上递减,那么f(x)在(1,)上()

  A.递增且无最大值B.递减且无最小值C.递增且有最大值D.递减且有最小值

  二、填空题1.若

  f(x)2x2xlga是奇函数,则实数a=_________。

  2.函数

  f(x)log1x22x5的值域是__________.

  23.已知log147a,log145b,则用a,b表示log3528。4.设

  A1,y,lgxy,B0,x,y,且AB,则x;y。5.计算:

  322log325。

  ex16.函数y的值域是__________.

  xe1三、解答题

  1.比较下列各组数值的大小:(1)1.7

  2.解方程:(1)9

  3.已知

  4.已知函数

  参考答案

  一、选择题

  x3.3和0.82.1;(2)3.30.7和3.40.8;(3)

  3,log827,log9252231x27(2)6x4x9x

  y4x32x3,当其值域为[1,7]时,求x的取值范围。

  f(x)loga(aax)(a1),求f(x)的定义域和值域;

  1112321.Alogaa3loga(2a),loga(2a),a32a,a8a,a,a3842.Aloga(b1)0,且logab1,ab2

  3.D令x4.B令令u68(x0),x82,f(8)f(x6)log2xlog2216f(x)lgx,f(x)lgxlgxf(x),即为偶函数

  x,x0时,u是x的减函数,即ylgx在区间(,0)上单调递减

  1x1xlgf(x).则f(a)f(a)b.5.Bf(x)lg1x1x6.A令ux1,(0,1)是u的递减区间,即a1,(1,)是u的递增区间,即f(x)递增且无最大值。

  二、填空题1.

  1xxxxf(x)f(x)22lga22lga10x(lga1)(2(另法):xR,由2.

  2x)0,lga10,a110110f(x)f(x)得f(0)0,即lga10,a,2x22x5(x1)244,

  而011,log1x22x5log1422222alog14283.log147log145log1435ab,log3528

  ablog1435141log14log14(214)1log14271(1log147)2a

  log1435log1435log1435log1435ab4.1,1∵0A,y又∵1B,y0,∴lg(xy)0,xy1

  51,∴x1,而x1,∴x1,且y1

  3215.

  5322log32log32532log321515ex11y6.(1,1)y,ex0,1y1ex11y三、解答题1.解:(1)∵1.71.701,0.82.10.801,∴1.73.30.82.1

  0.70.80.70.80.80.8(2)∵3.33.3,3.33.4,∴3.33.4(3)log827log23,log925log35,

  3.333332log22log222log23,log332log333log35,223∴log925log827.

  2x2xxxx2.解:(1)(3)63270,(33)(39)0,而330

  3x90,3x32,

  x22x4x22x2x(2)()()1,()()10

  39332251()x0,则()x,332

  xlog23512

  3.解:由已知得14x32x37,

  xxxx43237(21)(24)0,得x即

  xxx43231(21)(22)0xx即021,或224∴x0,或1x2。

  xx4.解:aa0,aa,x1,即定义域为(,1);

  ax0,0aaxa,loga(aax)1,即值域为(,1)。

  扩展阅读:高一数学上册 第二章基本初等函数之对数函数知识点总结及练习题(含答案)

  〖2.2〗对数函数

  【2.2.1】对数与对数运算

  (1)对数的定义

  ①若axN(a0,且a1),则x叫做以a为底N的对数,记作xlogaN,其中a叫做底数,

  N叫做真数.

  ②负数和零没有对数.③对数式与指数式的互化:xlogaNaxN(a0,a1,N0).

  (2)几个重要的对数恒等式:loga10,logaa1,logaabb.

  N;自然对数:lnN,即loge(3)常用对数与自然对数:常用对数:lgN,即log10…).e2.71828(4)对数的运算性质如果a0,a1,M①加法:logaN(其中

  0,N0,那么

  MlogaNloga(MN)

  M②减法:logaMlogaNlogaN③数乘:nlogaMlogaMn(nR)

  ④

  alogaNN

  nlogaM(b0,nR)bn⑤logabM⑥换底公式:logaNlogbN(b0,且b1)

  logba【2.2.2】对数函数及其性质

  (5)对数函数函数名称定义函数对数函数ylogax(a0且a1)叫做对数函数a1yx10a1yx1ylogaxylogax图象O(1,0)O(1,0)xx定义域值域过定点奇偶性(0,)R图象过定点(1,0),即当x1时,y0.非奇非偶单调性在(0,)上是增函数在(0,)上是减函数logax0(x1)函数值的变化情况logax0(x1)logax0(x1)logax0(0x1)logax0(x1)logax0(0x1)a变化对图象的影响在第一象限内,a越大图象越靠低,越靠近x轴在第一象限内,a越小图象越靠低,越靠近x轴在第四象限内,a越大图象越靠高,越靠近y轴在第四象限内,a越小图象越靠高,越靠近y轴(6)反函数的概念

  设函数果对于

  yf(x)的定义域为A,值域为C,从式子yf(x)中解出x,得式子x(y).如

  y在C中的任何一个值,通过式子x(y),x在A中都有唯一确定的值和它对应,那么式子

  x(y)表示x是y的函数,函数x(y)叫做函数yf(x)的反函数,记作xf1(y),习惯

  上改写成

  yf1(x).

  (7)反函数的求法

  ①确定反函数的定义域,即原函数的值域;②从原函数式③将xyf(x)中反解出xf1(y);

  f1(y)改写成yf1(x),并注明反函数的定义域.

  (8)反函数的性质

  ①原函数②函数

  yf(x)与反函数yf1(x)的图象关于直线yx对称.

  yf(x)的定义域、值域分别是其反函数yf1(x)的值域、定义域.

  yf(x)的图象上,则P"(b,a)在反函数yf1(x)的图象上.

  ③若P(a,b)在原函数④一般地,函数

  yf(x)要有反函数则它必须为单调函数.

  一、选择题:1.

  log89的值是log23A.

  ()

  23B.1C.

  32D.2

  2.已知x=2+1,则log4(x3-x-6)等于

  A.

  ()C.0

  D.

  32B.

  54123.已知lg2=a,lg3=b,则

  lg12等于lg15()

  A.

  2ab

  1abB.

  a2b

  1abC.

  2ab

  1abD.

  a2b

  1ab4.已知2lg(x-2y)=lgx+lgy,则x的值为

  yA.1

  B.4

  ()C.1或4C.(C.ln5

  D.4或-1()

  5.函数y=log1(2x1)的定义域为

  2A.(

  1,+∞)B.[1,+∞)2B.5e

  1,1]2D.(-∞,1)()D.log5e()

  y6.已知f(ex)=x,则f(5)等于

  A.e5

  7.若f(x)logax(a0且a1),且f1(2)1,则f(x)的图像是

  yyyABCD

  8.设集合A{x|x10},B{x|log2x0|},则AB等于

  A.{x|x1}C.{x|x1}

  B.{x|x0}D.{x|x1或x1}

  2OxOxOxOx()

  9.函数ylnx1,x(1,)的反函数为()x1ex1,x(0,)B.yxe1ex1,x(,0)D.yxe1ex1,x(0,)A.yxe1ex1,x(,0)C.yxe1二、填空题

函数知识点总结11

  一、函数

  (1)定义:设在某变化过程中有两个变量x、y,对于x的每一个值,y都有唯一的值与之对应,那么就说x是自变量,y是因变量,此时,也称y是x的函数。

  (2)本质:一一对应关系或多一对应关系。

  有序实数对平面直角坐标系上的点

  (3)表示方法:解析法、列表法、图象法。

  (4)自变量取值范围:

  对于实际问题,自变量取值必须使实际问题有意义;

  对于纯数学问题,自变量取值必须保证函数关系式有意义:

  ①分式中,分母≠0;

  ②二次根式中,被开方数≥0;

  ③整式中,自变量取全体实数;

  ④混合运算式中,自变量取各解集的公共部份。

  二、正比例函数与反比例函数

  两函数的异同点

  三、一次函数(图象为直线)

  (1)定义式:y=kx+b(k、b为常数,k≠0);自变量取全体实数。

  (2)性质:

  ①k>0,过第一、三象限,y随x的增大而增大;

  k<0,过第二、四象限,y随x的增大而减小。

  ②b=0,图象过(0,0);

  b>0,图象与y轴的交点(0,b)在x轴上方;

  b<0,图象与y轴的`交点(0,b)在x轴下方。

  四、二次函数(图象为抛物线)

  (1)自变量取全体实数

  一般式:y=ax2+bx+c(a、b、c为常数,a≠0),其中(0,c)为抛物线与y轴的交点;

  顶点式:y=a(x—h)2+k(a、h、k为常数,a≠0),其中(h,k)为抛物线顶点;

  h=—,k=零点式:y=a(x—x1)(x—x2)(a、x1、x2为常数,a≠0)其中(x1,0)、(x2,0)为抛物线与x轴的交点。x1、x2 =(b 2 —4ac ≥0)

  (2)性质:

  ①对称轴:x=—或x=h;

  ②顶点:(—,)或(h,k);

  ③最值:当x=—时,y有最大(小)值,为或当x=h时,y有最大(小)值,为k;

函数知识点总结12

  1.①与(0°≤<360°)终边相同的角的集合(角与角的终边重合):|k360,kZ

  ②终边在x轴上的角的集合:|k180,kZ③终边在y轴上的角的集合:|k18090,kZ

  ④终边在坐标轴上的角的集合:|k90,kZ

  ⑤终边在y=x轴上的角的集合:|k18045,kZ⑥终边在yx轴上的角的集合:|k18045,kZ

  ⑦若角与角的终边关于x轴对称,则角与角的关系:360k

  ⑧若角与角的终边关于y轴对称,则角与角的关系:360k180

  ⑨若角与角的终边在一条直线上,则角与角的关系:180k

  ⑩角与角的终边互相垂直,则角与角的关系:360k902.角度与弧度的互换关系:360°=2180°=1°=0.017451=57.30°=57°18′3、弧长公式:l||r.扇形面积公式:s12扇形2lr12||r

  2、三角函数在各象限的符号:(一全二正弦,三切四余弦)

  yy+y+-+-+-o-x-o+x+o-x正弦、余割余弦、正割正切、余切

  3.三角函数的定义域:

  三角函数定义域f(x)sinxx|xRf(x)cosxx|xRf(x)tanxx|xR且xk1,kZ2

  f(x)cotxx|xR且xk,kZ

  4、同角三角函数的基本关系式:

  sincostan

  cossincot

  tancot1sin2cos217、诱导公式:

  把k2“奇变偶不变,符号看象限”的三角函数化为的三角函数,概括为:三角函数的公式:

  (一)基本关系

  公式组一sinxcscx=1tanx=sinx22

  cosxsinx+cosx=1cosxsecx=1x=cosx2sinx1+tanx=sec2xtanxcotx=11+cot2x=csc2x

  公式组二公式组三

  sin(2kx)sinxsin(x)sinxcos(2kx)cosxcos(x)cosxtan(2kx)tanxtan(x)tanxcot(2kx)cotxcot(x)cotx

  公式组四公式组五sin(x)sinxsin(2x)sinxcos(x)cosxcos(2x)cosxtan(x)tanxtan(2x)tanxcot(x)cotx

  cot(2x)cotx(二)角与角之间的互换

  cos()coscossinsincos()coscossinsin

  公式组六

  sin(x)sinxcos(x)cosxtan(x)tanx

  cot(x)cotxsin22sincos-2-

  cos2cos2sin2cos112sin

  2tan1tan2222sin()sincoscossintan2sin()sincoscossintan()tantan1tantan

  tantan1tantan

  tan()

  5.正弦、余弦、正切、余切函数的图象的性质:

  ysinxycosxytanxycotxyAsinx(A、>0)定义域RR值域周期性奇偶性单调性[1,1][1,1]1x|xR且xk,kZ2x|xR且xk,kZRRR奇函数A,A22奇函数2当当0,非奇非偶奇函数偶函数奇函数0,上为上为上为增函上为增函数;上为增增函数;增函数;数;上为减函数函数;上为减函数上为减上为减上为减函数函数函数注意:①ysinx与ysinx的单调性正好相反;ycosx与ycosx的`单调性也同样相反.一般地,若yf(x)在[a,b]上递增(减),则yf(x)在[a,b]上递减(增).②ysinx与的ycosx周期是.

  ▲y

  Ox

  0)的周期T③ysin(x)或yx2cos(x)(2.

  ytan的周期为2(TT2,如图,翻折无效).

  ④ysin(x)的对称轴方程是xk2(

  kZ),对称中心(

  12k,0);

  ycos(x)的对称轴方程是xk(

  kZ),对称中心(k,0);

  yatn(

  x)的对称中心(

  k2,0).

  三角函数图像

  数y=Asin(ωx+φ)的振幅|A|,周期T2||,频率f1T||2,相位x;初

  相(即当x=0时的相位).(当A>0,ω>0时以上公式可去绝对值符号),

  由y=sinx的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y=Asinx的图象,叫做振幅变换或叫沿y轴的伸缩变换.(用y/A替换y)

  由y=sinx的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的|1|倍,得到y=sinωx的图象,叫做周期变换或叫做沿x轴的伸缩变换.(用

  ωx替换x)

  由y=sinx的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y=sin(x+φ)的图象,叫做相位变换或叫做沿x轴方向的平移.(用x+φ替换x)

  由y=sinx的图象上所有的点向上(当b>0)或向下(当b<0)平行移动|b|个单位,得到y=sinx+b的图象叫做沿y轴方向的平移.(用y+(-b)替换y)

  由y=sinx的图象利用图象变换作函数y=Asin(ωx+φ)(A>0,ω>0)(x∈R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x轴量伸缩量的区别。

函数知识点总结13

  余割函数

  对于任意一个实数x,都对应着唯一的`角(弧度制中等于这个实数),而这个角又对应着唯一确定的余割值cscx与它对应,按照这个对应法则建立的函数称为余割函数。

  记作f(x)=cscx

  f(x)=cscx=1/sinx

  1、定义域:{x|x≠kπ,k∈Z}

  2、值域:{y|y≤-1或y≥1}

  3、奇偶性:奇函数

  4、周期性:最小正周期为2π

  5、图像:

  图像渐近线为:x=kπ ,k∈Z

  其实有一点需要注意,就是余割函数与正弦函数互为倒数。

函数知识点总结14

  奇函数和偶函数的定义

  奇函数:如果函数f(x)的定义域中任意x有f(—x)=—f(x),则函数f(x)称为奇函数。

  偶数函数:如果函数f(x)的定义域中任意x有f(—x)=f(x),则函数f(x)称为偶数函数。

  性质

  奇函数性质:

  1、图象关于原点对称

  2、满足f(—x)= — f(x)

  3、关于原点对称的区间上单调性一致

  4、如果奇函数在x=0上有定义,那么有f(0)=0

  5、定义域关于原点对称(奇偶函数共有的.)

  偶函数性质:

  1、图象关于y轴对称

  2、满足f(—x)= f(x)

  3、关于原点对称的区间上单调性相反

  4、如果一个函数既是奇函数有是偶函数,那么有f(x)=0

  5、定义域关于原点对称(奇偶函数共有的)

  常用运算方法

  奇函数±奇函数=奇函数

  偶函数±偶函数=偶函数

  奇函数×奇函数=偶函数

  偶函数×偶函数=偶函数

  奇函数×偶函数=奇函数

  证明方法

  设f(x),g(x)为奇函数,t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=—f(x)+(—g(x))=—t(x),所以奇函数加奇函数还是奇函数;

  若f(x),g(x)为偶函数,t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=f(x)+g(x)=t(x),所以偶函数加偶函数还是偶函数。

函数知识点总结15

  首先,把主要精力放在基础知识、基本技能、基本方法这三个方面上、因为每次考试占绝大部分的是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳,调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁情绪、特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能把我打垮的自豪感、

  在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前在保证正确率的前提下提高解题速度、对于一些容易的基础题,要有十二分的把握拿满分;对于一些难题,也要尽量拿分,考试中要尝试得分,使自己的水平正常甚至超常发挥、

  要想学好初中数学,多做题目是难免的,熟悉掌握各种题型的解题思路、刚开始要以基础题目入手,以课上的题目为准,提高自己的分析解决能力,掌握一般的'解题思路、对于一些易错题,可备有错题集,写出自己的解题思路、正确的解题过程,两者一起比较找出自己的错误所在,以便及时更正、在平时养成良好的解题习惯、让自己的精力高度集中,使大脑兴奋思维敏捷,能够进入最佳状态,在考试中能运用自如、实践证明:越到关键的时候,你所表现的解题习惯与平时解题无异、如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的、

  初中数学解题方法

  第一点:卓绝点:熟悉数学习题中常设计的内容,定义、公式、原理等等

  第二点:做题有步骤,先易后难

  初中数学做题技巧有一点,那就是先易后难、正所谓“一屋不扫何以扫天下?”,如果同学们连那些简单容易的数学题目都解答不出来又怎么能够解答那些疑难的数学题目呢?先易后难的做数学题目不仅能够增加同学们做数学题的信心,还能够让同学享受解答数学题的那个过程、

  第三点:认真做好归纳总结

【函数知识点总结】相关文章:

函数知识点总结02-10

函数知识点总结06-23

(精)函数知识点总结08-25

[精华]函数知识点总结08-28

函数知识点总结【热门】08-21

(实用)函数知识点总结09-21

[集合]函数知识点总结09-19

函数知识点总结(热门)09-19

函数知识点总结(实用)09-20

【优秀】函数知识点总结09-20