函数知识点总结

时间:2024-09-22 17:06:25 知识点总结 我要投稿

函数知识点总结(精选15篇)

  总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,让我们一起认真地写一份总结吧。你所见过的总结应该是什么样的?下面是小编收集整理的函数知识点总结,仅供参考,欢迎大家阅读。

函数知识点总结(精选15篇)

函数知识点总结1

  反比例函数的表达式

  X是自变量,Y是X的函数

  y=k/x=k·1/x

  xy=k

  y=k·x^(-1)(即:y等于x的负一次方,此处X必须为一次方)

  y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n

  函数式中自变量取值的范围

  ①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。  解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数

  y=k/x=k·1/x  xy=k  y=k·x^(-1)  y=kx(k为常数(k≠0),x不等于0)

  反比例函数图象

  反比例函数的图像属于以原点为对称中心的中心对称的双曲线,反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

  反比例函数中k的.几何意义是什么?有哪些应用

  过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值*y的绝对值=(x*y)的绝对值=|k|

  研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。

  所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

函数知识点总结2

  三角和的公式

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  倍角公式

  tan2A = 2tanA/(1-tan2 A)

  Sin2A=2SinA?CosA

  Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

  三倍角公式

  sin3A = 3sinA-4(sinA)3;

  cos3A = 4(cosA)3 -3cosA

  tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

  三角函数特殊值

  α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

  α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

  a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

  α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

  α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

  α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

  α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

  α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

  α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

  α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

  α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  三角函数记忆顺口溜

  1三角函数记忆口诀

  “奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的'是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。

  以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。

  2符号判断口诀

  全,S,T,C,正。这五个字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。

  也可以这样理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是对应象限三角函数为正值的名称。口诀中未提及的都是负值。

  “ASTC”反Z。意即为“all(全部)”、“sin”、“tan”、“cos”按照将字母Z反过来写所占的象限对应的三角函数为正值。

  3三角函数顺口溜

  三角函数是函数,象限符号坐标注。函数图像单位圆,周期奇偶增减现。

  同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

  中心记上数字一,连结顶点三角形。向下三角平方和,倒数关系是对角,

  顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,

  变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

  将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

  余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

  计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

  逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

  万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

  一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范;

  三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

  利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。

函数知识点总结3

  总体上必须清楚的:

  1)程序结构是三种:顺序结构、选择结构(分支结构)、循环结构。

  2)读程序都要从main()入口,然后从最上面顺序往下读(碰到循环做循环,碰到选择做选择),有且只有一个main函数。

  3)计算机的数据在电脑中保存是以二进制的形式.数据存放的位置就是他的地址.

  4)bit是位是指为0或者1。 byte是指字节,一个字节=八个位.

  概念常考到的:

  1、编译预处理不是C语言的一部分,不占运行时间,不要加分号。C语言编译的程序称为源程序,它以ASCII数值存放在文本文件中。

  2、define PI 3.1415926;这个写法是错误的,一定不能出现分号。 -

  3、每个C语言程序中main函数是有且只有一个。

  4、在函数中不可以再定义函数。

  5、算法:可以没有输入,但是一定要有输出。

  6、break可用于循环结构和switch语句。

  7、逗号运算符的级别最低,赋值的级别倒数第二。

  第一章C语言的基础知识

  第一节、对C语言的基础认识

  1、C语言编写的程序称为源程序,又称为编译单位。

  2、C语言书写格式是自由的,每行可以写多个语句,可以写多行。

  3、一个C语言程序有且只有一个main函数,是程序运行的起点。

  第二节、熟悉vc++

  1、VC是软件,用来运行写的C语言程序。

  2、每个C语言程序写完后,都是先编译,后链接,最后运行。(.c—.obj—.exe)这个过程中注意.c和.obj文件时无法运行的,只有.exe文件才可以运行。(常考!)

  第三节、标识符

  1、标识符(必考内容):

  合法的要求是由字母,数字,下划线组成。有其它元素就错了。

  并且第一个必须为字母或则是下划线。第一个为数字就错了

  2、标识符分为关键字、预定义标识符、用户标识符。

  关键字:不可以作为用户标识符号。main define scanf printf都不是关键字。迷惑你的地方If是可以做为用户标识符。因为If中的第一个字母大写了,所以不是关键字。

  预定义标识符:背诵define scanf printf include。记住预定义标识符可以做为用户标识符。

  用户标识符:基本上每年都考,详细请见书上习题。

  第四节:进制的转换

  十进制转换成二进制、八进制、十六进制。

  二进制、八进制、十六进制转换成十进制。

  第五节:整数与实数

  1)C语言只有八、十、十六进制,没有二进制。但是运行时候,所有的进制都要转换成二进制来进行处理。(考过两次)

  a、C语言中的八进制规定要以0开头。018的数值是非法的,八进制是没有8的,逢8进1。

  b、C语言中的十六进制规定要以0x开头。

  2)小数的合法写法:C语言小数点两边有一个是零的话,可以不用写。

  1.0在C语言中可写成1.

  0.1在C语言中可以写成.1。

  3)实型数据的合法形式:

  a、2.333e-1就是合法的,且数据是2.333×10-1。

  b、考试口诀:e前e后必有数,e后必为整数。请结合书上的例子。

  4)整型一般是4个字节,字符型是1个字节,双精度一般是8个字节:

  long int x;表示x是长整型。

  unsigned int x;表示x是无符号整型。

  第六、七节:算术表达式和赋值表达式

  核心:表达式一定有数值!

  1、算术表达式:+,-,*,/,%

  考试一定要注意:“/”两边都是整型的话,结果就是一个整型。 3/2的结果就是1.

  “/”如果有一边是小数,那么结果就是小数。 3/2.0的结果就是0.5

  “%”符号请一定要注意是余数,考试最容易算成了除号。)%符号两边要求是整数。不是整数就错了。[注意!!!]

  2、赋值表达式:表达式数值是最左边的数值,a=b=5;该表达式为5,常量不可以赋值。

  1、int x=y=10:错啦,定义时,不可以连续赋值。

  2、int x,y;

  x=y=10;对滴,定义完成后,可以连续赋值。

  3、赋值的左边只能是一个变量。

  4、int x=7.7;对滴,x就是7

  5、float y=7;对滴,x就是7.0

  3、复合的赋值表达式:

  int a=2;

  a*=2+3;运行完成后,a的值是12。

  一定要注意,首先要在2+3的上面打上括号。变成(2+3)再运算。

  4、自加表达式:

  自加、自减表达式:假设a=5,++a(是为6),a++(为5);

  运行的机理:++a是先把变量的数值加上1,然后把得到的数值放到变量a中,然后再用这个++a表达式的数值为6,而a++是先用该表达式的数值为5,然后再把a的数值加上1为6,

  再放到变量a中。进行了++a和a++后在下面的程序中再用到a的话都是变量a中的6了。

  考试口诀:++在前先加后用,++在后先用后加。

  5、逗号表达式:

  优先级别最低。表达式的数值逗号最右边的那个表达式的数值。

  (2,3,4)的表达式的数值就是4。

  z=(2,3,4)(整个是赋值表达式)这个时候z的'值为4。(有点难度哦!)

  z= 2,3,4(整个是逗号表达式)这个时候z的值为2。

  补充:

  1、空语句不可以随意执行,会导致逻辑错误。

  2、注释是最近几年考试的重点,注释不是C语言,不占运行时间,没有分号。不可以嵌套!

  3、强制类型转换:

  一定是(int)a不是int(a),注意类型上一定有括号的。

  注意(int)(a+b)和(int)a+b的区别。前是把a+b转型,后是把a转型再加b。

  4、三种取整丢小数的情况:

  1、int a =1.6;

  2、(int)a;

  3、1/2;3/2;

  第八节、字符

  1)字符数据的合法形式::

  ‘1’是字符占一个字节,”1”是字符串占两个字节(含有一个结束符号)。

  ‘0’的ASCII数值表示为48,’a’的ASCII数值是97,’A’的ASCII数值是65。

  一般考试表示单个字符错误的形式:’65’ “1”

  字符是可以进行算术运算的,记住:‘0’-0=48

  大写字母和小写字母转换的方法:‘A’+32=’a’相互之间一般是相差32。

  2)转义字符:

  转义字符分为一般转义字符、八进制转义字符、十六进制转义字符。

  一般转义字符:背诵/0、、 ’、 ”、 。

  八进制转义字符:‘141’是合法的,前导的0是不能写的。

  十六进制转义字符:’x6d’才是合法的,前导的0不能写,并且x是小写。

  3、字符型和整数是近亲:两个具有很大的相似之处

  char a = 65 ;

  printf(“%c”, a);得到的输出结果:a

  printf(“%d”, a);得到的输出结果:65

  第九节、位运算

  1)位运算的考查:会有一到二题考试题目。

  总的处理方法:几乎所有的位运算的题目都要按这个流程来处理(先把十进制变成二进制再变成十进制)。

  例1:char a = 6, b;

  b = a<<2;这种题目的计算是先要把a的十进制6化成二进制,再做位运算。

  例2:一定要记住,异或的位运算符号” ^ ”。0异或1得到1。

  0异或0得到0。两个女的生不出来。

  考试记忆方法:一男(1)一女(0)才可以生个小孩(1)。

  例3:在没有舍去数据的时候,<<左移一位表示乘以2;>>右移一位表示除以2。

函数知识点总结4

  课题

  3.5正比例函数、反比例函数、一次函数和二次函数

  教学目标

  1、掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质2、会用待定系数法确定函数的解析式

  教学重点

  掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质

  教学难点

  掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质

  教学方法

  讲练结合法

  教学过程

  (I)知识要点(见下表:)

  第三章第29页函数名称解析式图像正比例函数ykx(k0)0x反比例函数一次函数ykxb(k0)0x二次函数yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0图像过点(0,0)及(1,k)的直线双曲线,x轴、y轴是它的渐近线与直线ykx平行且过点(0,b)的'直线抛物线定义域RxxR且xoyyR且yoRR4acb2a0时,y,4aR值域R4acb2a0时,y,4aba0时,在-,上为增2a函数,在,-单调性k0时,在,0,k0时为增函数0,上为减函数k0时,为增函数b上为减函数2ak0时为减函数k0时,在,0,k0时,为减函数0,上为增函数ba0时,在-,上为减2a函数,在,-b上为增函数2a奇偶性奇函数奇函数b=0时奇函数b=0时偶函数a0且x-ymin最值无无无b时,2a24acb4ab时,2a24acb4aa0且x-ymax

  第三章第30页b24acb2注:二次函数yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2对称轴x,顶点(,)

  2a2a4a2抛物线与x轴交点坐标(m,0),(n,0)(II)例题讲解

  例1、求满足下列条件的二次函数的解析式:(1)抛物线过点A(1,1),B(2,2),C(4,2)(2)抛物线的顶点为P(1,5)且过点Q(3,3)

  (3)抛物线对称轴是x2,它在x轴上截出的线段AB长为2且抛物线过点(1,7)。2,

  解:(1)设yax2bxc(a0),将A、B、C三点坐标分别代入,可得方程组为

  abc1a1解得b4yx24x24a2bc216a4bc2c2(2)设二次函数为ya(x1)25,将Q点坐标代入,即a(31)253,得

  a2,故y2(x1)252x24x3

  (3)∵抛物线对称轴为x2;

  ∴抛物线与x轴的两个交点A、B应关于x2对称;∴由题设条件可得两个交点坐标分别为A(2∴可设函数解析式为:ya(x2代入方程可得a1

  ∴所求二次函数为yx24x2,

  2,0)、B(222,0)

  2)(x22)a(x2)22a,将(1,7)

  5),例2:二次函数的图像过点(0,8),(1,(4,0)

  (1)求函数图像的顶点坐标、对称轴、最值及单调区间(2)当x取何值时,①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

  例3:求函数f(x)x2x1,x[1,1]的最值及相应的x值

  113x1(x)2,知函数的图像开口向上,对称轴为x

  224111]上是增函数。∴依题设条件可得f(x)在[1,]上是减函数,在[,22131]时,函数取得最小值,且ymin∴当x[1,24131又∵11

函数知识点总结5

  1二次函数的定义

  一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函数.

  注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;

  (2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),自变量x的取值范围是全体实数;

  (3)当b=c=0时,二次函数y=ax2是最简单的二次函数;

  (4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数.

  2二次函数解析式的几种形式

  (1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0).

  (2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).

  (3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的'两个根,a≠0.

  说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点

  3二次函数y=ax2+c的图象与性质

  (1)抛物线y=ax2+c的形状由a决定,位置由c决定.

  (2)二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y轴.

  当a>0时,图象的开口向上,有最低点(即顶点),当x=0时,y最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大.

  当a<0时,图象的开口向下,有最高点(即顶点),当x=0时,y最大值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小.

  (3)抛物线y=ax2+c与y=ax2的关系.

  抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动.

函数知识点总结6

  ∴当x1时函数取得最大值,且ymax(1)2(1)13例4、已知函数f(x)x22(a1)x2

  4],求实数a的取值(1)若函数f(x)的递减区间是(,4]上是减函数,求实数a的取值范围(2)若函数f(x)在区间(,分析:二次函数的单调区间是由其开口方向及对称轴决定的,要分清函数在区间A上是单调函数及单调区间是A的区别与联系

  解:(1)f(x)的对称轴是x可得函数图像开口向上

  2(a1)21a,且二次项系数为1>0

  1a]∴f(x)的单调减区间为(,∴依题设条件可得1a4,解得a3

  4]上是减函数(2)∵f(x)在区间(,4]是递减区间(,1a]的子区间∴(,∴1a4,解得a3

  例5、函数f(x)x2bx2,满足:f(3x)f(3x)

  (1)求方程f(x)0的.两根x1,x2的和(2)比较f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函数图像的对称轴为x(3x)(3x)23

  b3可得b62f(x)x26x2(x3)211

  而f(x)的图像与x轴交点(x1,0)、(x2,0)关于对称轴x3对称

  x1x223,可得x1x26

  第三章第32页由二次项系数为1>0,可知抛物线开口向上又134,132,431

  ∴依二次函数的对称性及单调性可f(4)f(1)f(1)(III)课后作业练习六

  (Ⅳ)教学后记:

  第三章第33页

  扩展阅读:初中数学函数知识点归纳

  学大教育

  初中数学函数板块的知识点总结与归类学习方法

  初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,掌握了函数的基本性质及其应用,真正精通了函数的每一个模块知识,会做每一类函数题型,就读于中考中数学成功了一大半,数学成绩自然上高峰,同时,函数的思想是学好其他理科类学科的基础。初中数学从性质上分,可以分为:一次函数、反比例函数、二次函数和锐角三角函数,下面介绍各类函数的定义、基本性质、函数图象及函数应用思维方式方法。

  一、一次函数

  1.定义:在定义中应注意的问题y=kx+b中,k、b为常数,且k≠0,x的指数一定为1。2.图象及其性质(1)形状、直线

函数知识点总结7

  特别地,二次函数(以下称函数)y=ax+bx+c。

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax+bx+c=0。

  此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

  1.二次函数y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的图象形状相同,只是位置不同。当h>0时,y=a(x-h)的图象可由抛物线y=ax向右平行移动h个单位得到。

  当h<0时,则向xxx移动|h|个单位得到。

  当h>0,k>0时,将抛物线y=ax向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)+k的图象。

  当h>0,k<0时,将抛物线y=ax向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象。

  当h<0,k>0时,将抛物线向xxx移动|h|个单位,再向上移动k个单位可得到y=a(x-h)+k的图象。

  当h<0,k<0时,将抛物线向xxx移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)+k的图象。

  因此,研究抛物线y=ax+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便。

  2.抛物线y=ax+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b]/4a)。

  3.抛物线y=ax+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小。

  4.抛物线y=ax+bx+c的图象与坐标轴的`交点:

  (1)图象与y轴一定相交,交点坐标为(0,c)。

  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的两根.这两点间的距离AB=|x-x|。

  当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。

  5.抛物线y=ax+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b)/4a。

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax+bx+c(a≠0)。

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)+k(a≠0)。

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a≠0)。

函数知识点总结8

  奇函数和偶函数的定义

  奇函数:如果函数f(x)的定义域中任意x有f(—x)=—f(x),则函数f(x)称为奇函数。

  偶数函数:如果函数f(x)的定义域中任意x有f(—x)=f(x),则函数f(x)称为偶数函数。

  性质

  奇函数性质:

  1、图象关于原点对称

  2、满足f(—x)= — f(x)

  3、关于原点对称的区间上单调性一致

  4、如果奇函数在x=0上有定义,那么有f(0)=0

  5、定义域关于原点对称(奇偶函数共有的)

  偶函数性质:

  1、图象关于y轴对称

  2、满足f(—x)= f(x)

  3、关于原点对称的'区间上单调性相反

  4、如果一个函数既是奇函数有是偶函数,那么有f(x)=0

  5、定义域关于原点对称(奇偶函数共有的)

  常用运算方法

  奇函数±奇函数=奇函数

  偶函数±偶函数=偶函数

  奇函数×奇函数=偶函数

  偶函数×偶函数=偶函数

  奇函数×偶函数=奇函数

  证明方法

  设f(x),g(x)为奇函数,t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=—f(x)+(—g(x))=—t(x),所以奇函数加奇函数还是奇函数;

  若f(x),g(x)为偶函数,t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=f(x)+g(x)=t(x),所以偶函数加偶函数还是偶函数。

函数知识点总结9

  I.定义与定义表达式

  一般地,自变量_和因变量y之间存在如下关系:y=a_^2+b_+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为_的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=a_^2+b_+c(a,b,c为常数,a≠0)

  顶点式:y=a(_-h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(_-_?)(_-_?)[仅限于与_轴有交点A(_?,0)和B(_?,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a

  III.二次函数的图像

  在平面直角坐标系中作出二次函数y=_^2的图像,可以看出,二次函数的图像是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线_=-b/2a。

  对称轴与抛物线的.交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线_=0)

  2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在_轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与_轴交点个数

  Δ=b^2-4ac>0时,抛物线与_轴有2个交点。

  Δ=b^2-4ac=0时,抛物线与_轴有1个交点。

  Δ=b^2-4ac<0时,抛物线与_轴没有交点。

  _的取值是虚数(_=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  V.二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=a_^2+b_+c,

  当y=0时,二次函数为关于_的一元二次方程(以下称方程),即a_^2+b_+c=0

  此时,函数图像与_轴有无交点即方程有无实数根。函数与_轴交点的横坐标即为方程的根。

函数知识点总结10

  首先,把主要精力放在基础知识、基本技能、基本方法这三个方面上、因为每次考试占绝大部分的是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳,调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁情绪、特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能把我打垮的自豪感、

  在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前在保证正确率的前提下提高解题速度、对于一些容易的基础题,要有十二分的把握拿满分;对于一些难题,也要尽量拿分,考试中要尝试得分,使自己的水平正常甚至超常发挥、

  要想学好初中数学,多做题目是难免的,熟悉掌握各种题型的解题思路、刚开始要以基础题目入手,以课上的题目为准,提高自己的分析解决能力,掌握一般的解题思路、对于一些易错题,可备有错题集,写出自己的解题思路、正确的解题过程,两者一起比较找出自己的错误所在,以便及时更正、在平时养成良好的解题习惯、让自己的精力高度集中,使大脑兴奋思维敏捷,能够进入最佳状态,在考试中能运用自如、实践证明:越到关键的时候,你所表现的解题习惯与平时解题无异、如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的`解题习惯是非常重要的、

  初中数学解题方法

  第一点:卓绝点:熟悉数学习题中常设计的内容,定义、公式、原理等等

  第二点:做题有步骤,先易后难

  初中数学做题技巧有一点,那就是先易后难、正所谓“一屋不扫何以扫天下?”,如果同学们连那些简单容易的数学题目都解答不出来又怎么能够解答那些疑难的数学题目呢?先易后难的做数学题目不仅能够增加同学们做数学题的信心,还能够让同学享受解答数学题的那个过程、

  第三点:认真做好归纳总结

函数知识点总结11

  1. 函数的奇偶性

  (1)若f(x)是偶函数,那么f(x)=f(-x) ;

  (2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

  2. 复合函数的有关问题

  (1)复合函数定义域求法:若已知 的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的单调性由“同增异减”判定;

  3.函数图像(或方程曲线的对称性)

  (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

  (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;

  4.函数的.周期性

  (1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a0)恒成立,则y=f(x)是周期为2a的周期函数;

  (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

  (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

  (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;

  (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;

  (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;

  5.

  方程k=f(x)有解 k∈D(D为f(x)的值域);

  6.

  a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

  7.

  (1) (a0,a≠1,b0,n∈R+);

  (2) l og a N= ( a0,a≠1,b0,b≠1);

  (3) l og a b的符号由口诀“同正异负”记忆;

  (4) a log a N= N ( a0,a≠1,N

  8. 判断对应是否为映射时,抓住两点:

  (1)A中元素必须都有象且唯一;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  10.对于反函数,应掌握以下一些结论:

  (1)定义域上的单调函数必有反函数;

  (2)奇函数的反函数也是奇函数;

  (3)定义域为非单元素集的偶函数不存在反函数;

  (4)周期函数不存在反函数;

  (5)互为反函数的两个函数具有相同的单调性;

  (5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

  11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

  12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

  13. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;

函数知识点总结12

  一、函数对称性:

  1.2.3.4.5.6.7.8.

  f(a+x)=f(a-x)==>f(x)关于x=a对称

  f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称

  f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称

  例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。

  【解析】求两个不同函数的对称轴,用设点和对称原理作解。

  证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)]

  ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.

  例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。

  证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b]

  ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.

  二、函数的周期性

  令a,b均不为零,若:

  1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|

  2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|

  3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|

  4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|

  5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|

  这里只对第2~5点进行解析。

  第2点解析:

  令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba

  第3点解析:同理,f(x+a)=-f(x+2a)……

  ①f(x)=-f(x+a)……

  ②∴由①和②解得f(x)=f(x+2a)∴函数最小正周期T=|2a|

  第4点解析:

  f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)

  又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)

  ∴函数最小正周期T=|2a|

  第5点解析:

  ∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1

  ∴1f(x)=2/[f(x)+1]移项得f(x)=12/[f(x+a)+1]

  那么f(x-a)=12/[f(x)+1],等式右边通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,

  由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)

  ∴函数最小正周期T=|4a|

  扩展阅读:函数对称性、周期性和奇偶性的规律总结

  函数对称性、周期性和奇偶性规律总结

  (一)同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性)

  1、奇偶性:

  (1)奇函数关于(0,0)对称,奇函数有关系式f(x)f(x)0

  (2)偶函数关于y(即x=0)轴对称,偶函数有关系式f(x)f(x)

  2、奇偶性的拓展:同一函数的.对称性

  (1)函数的轴对称:

  函数yf(x)关于xa对称f(ax)f(ax)

  f(ax)f(ax)也可以写成f(x)f(2ax)或f(x)f(2ax)

  若写成:f(ax)f(bx),则函数yf(x)关于直线x称

  (ax)(bx)ab对22证明:设点(x1,y1)在yf(x)上,通过f(x)f(2ax)可知,y1f(x1)f(2ax1),

  即点(2ax1,y1)也在yf(x)上,而点(x1,y1)与点(2ax1,y1)关于x=a对称。得证。

  说明:关于xa对称要求横坐标之和为2a,纵坐标相等。

  ∵(ax1,y1)与(ax1,y1)关于xa对称,∴函数yf(x)关于xa对称

  f(ax)f(ax)

  ∵(x1,y1)与(2ax1,y1)关于xa对称,∴函数yf(x)关于xa对称

  f(x)f(2ax)

  ∵(x1,y1)与(2ax1,y1)关于xa对称,∴函数yf(x)关于xa对称

  f(x)f(2ax)

  (2)函数的点对称:

  函数yf(x)关于点(a,b)对称f(ax)f(ax)2b

  上述关系也可以写成f(2ax)f(x)2b或f(2ax)f(x)2b

  若写成:f(ax)f(bx)c,函数yf(x)关于点(abc,)对称2证明:设点(x1,y1)在yf(x)上,即y1f(x1),通过f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以点(2ax1,2by1)也在yf(x)上,而点(2ax1,2by1)与(x1,y1)关于(a,b)对称。得证。

  说明:关于点(a,b)对称要求横坐标之和为2a,纵坐标之和为2b,如(ax)与(ax)之和为2a。

  (3)函数yf(x)关于点yb对称:假设函数关于yb对称,即关于任一个x值,都有两个y值与其对应,显然这不符合函数的定义,故函数自身不可能关于yb对称。但在曲线c(x,y)=0,则有可能会出现关于yb对称,比如圆c(x,y)x2y240它会关于y=0对称。

  (4)复合函数的奇偶性的性质定理:

  性质1、复数函数y=f[g(x)]为偶函数,则f[g(-x)]=f[g(x)]。复合函数y=f[g(x)]为奇函数,则f[g(-x)]=-f[g(x)]。

  性质2、复合函数y=f(x+a)为偶函数,则f(x+a)=f(-x+a);复合函数y=f(x+a)为奇函数,则f(-x+a)=-f(a+x)。

  性质3、复合函数y=f(x+a)为偶函数,则y=f(x)关于直线x=a轴对称。复合函数y=f(x+a)为奇函数,则y=f(x)关于点(a,0)中心对称。

  总结:x的系数一个为1,一个为-1,相加除以2,可得对称轴方程

  总结:x的系数一个为1,一个为-1,f(x)整理成两边,其中一个的系数是为1,另一个为-1,存在对称中心。

  总结:x的系数同为为1,具有周期性。

  (二)两个函数的图象对称性

  1、yf(x)与yf(x)关于X轴对称。

  证明:设yf(x)上任一点为(x1,y1)则y1f(x1),所以yf(x)经过点(x1,y1)

  ∵(x1,y1)与(x1,y1)关于X轴对称,∴y1f(x1)与yf(x)关于X轴对称.注:换种说法:yf(x)与yg(x)f(x)若满足f(x)g(x),即它们关于y0对称。

函数知识点总结13

  一次函数

  一、定义与定义式:

  自变量x和因变量y有如下关系:

  y=kx+b

  则此时称y是x的一次函数。

  特别地,当b=0时,y是x的正比例函数。

  即:y=kx (k为常数,k0)

  二、一次函数的性质:

  1、y的变化值与对应的x的变化值成正比例,比值为k

  即:y=kx+b (k为任意不为零的实数b取任何实数)

  2、当x=0时,b为函数在y轴上的截距。

  三、一次函数的图像及性质:

  1、作法与图形:通过如下3个步骤

  (1)列表;

  (2)描点;

  (3)连线,可以作出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

  2、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)正比例函数的图像总是过原点。

  3、k,b与函数图像所在象限:

  当k0时,直线必通过一、三象限,y随x的增大而增大;

  当k0时,直线必通过二、四象限,y随x的增大而减小。

  当b0时,直线必通过一、二象限;

  当b=0时,直线通过原点

  当b0时,直线必通过三、四象限。

  特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。

  四、确定一次函数的表达式:

  已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

  (1)设一次函数的表达式(也叫解析式)为y=kx+b。

  (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b ①和y2=kx2+b ②

  (3)解这个二元一次方程,得到k,b的值。

  (4)最后得到一次函数的表达式。

  五、一次函数在生活中的应用:

  1、当时间t一定,距离s是速度v的一次函数。s=vt。

  2、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S—ft。

  六、常用公式:(不全,希望有人补充)

  1、求函数图像的k值:(y1—y2)/(x1—x2)

  2、求与x轴平行线段的中点:|x1—x2|/2

  3、求与y轴平行线段的中点:|y1—y2|/2

  4、求任意线段的长:(x1—x2)^2+(y1—y2)^2 (注:根号下(x1—x2)与(y1—y2)的平方和)

  二次函数

  I、定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:

  y=ax^2+bx+c

  (a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大、)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II、二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a0)

  顶点式:y=a(x—h)^2+k [抛物线的顶点P(h,k)]

  交点式:y=a(x—x)(x—x ) [仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a

  III、二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,

  可以看出,二次函数的图像是一条抛物线。

  IV、抛物线的性质

  1、抛物线是轴对称图形。对称轴为直线

  x= —b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2、抛物线有一个顶点P,坐标为

  P( —b/2a,(4ac—b^2)/4a )

  当—b/2a=0时,P在y轴上;当= b^2—4ac=0时,P在x轴上。

  3、二次项系数a决定抛物线的开口方向和大小。

  当a0时,抛物线向上开口;当a0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4、一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab0),对称轴在y轴左;

  当a与b异号时(即ab0),对称轴在y轴右。

  5、常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6、抛物线与x轴交点个数

  = b^2—4ac0时,抛物线与x轴有2个交点。

  = b^2—4ac=0时,抛物线与x轴有1个交点。

  = b^2—4ac0时,抛物线与x轴没有交点。X的取值是虚数(x= —bb^2—4ac的值的相反数,乘上虚数i,整个式子除以2a)

  V、二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax^2+bx+c,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),

  即ax^2+bx+c=0

  此时,函数图像与x轴有无交点即方程有无实数根。

  函数与x轴交点的横坐标即为方程的根。

  1、二次函数y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

  解析式顶点坐标对称轴

  y=ax^2(0,0) x=0

  y=a(x—h)^2(h,0) x=h

  y=a(x—h)^2+k(h,k) x=h

  y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a

  当h0时,y=a(x—h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

  当h0时,则向左平行移动|h|个单位得到、

  当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x—h)^2+k的图象;

  当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x—h)^2+k的图象;

  当h0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x—h)^2+k的图象;

  当h0,k0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x—h)^2+k的图象;

  因此,研究抛物线y=ax^2+bx+c(a0)的图象,通过配方,将一般式化为y=a(x—h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的`大体位置就很清楚了、这给画图象提供了方便、

  2、抛物线y=ax^2+bx+c(a0)的图象:当a0时,开口向上,当a0时开口向下,对称轴是直线x=—b/2a,顶点坐标是(—b/2a,[4ac—b^2]/4a)、

  3、抛物线y=ax^2+bx+c(a0),若a0,当x —b/2a时,y随x的增大而减小;当x —b/2a时,y随x的增大而增大、若a0,当x —b/2a时,y随x的增大而增大;当x —b/2a时,y随x的增大而减小、

  4、抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2—4ac0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=

  (a0)的两根、这两点间的距离AB=|x—x|

  当△=0、图象与x轴只有一个交点;

  当△0、图象与x轴没有交点、当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0、

  5、抛物线y=ax^2+bx+c的最值:如果a0(a0),则当x= —b/2a时,y最小(大)值=(4ac—b^2)/4a、

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值、

  6、用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

  y=ax^2+bx+c(a0)、

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x—h)^2+k(a0)、

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x—x)(x—x)(a0)、

  7、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现、

  反比例函数

  形如y=k/x(k为常数且k0)的函数,叫做反比例函数。

  自变量x的取值范围是不等于0的一切实数。

  反比例函数图像性质:

  反比例函数的图像为双曲线。

  由于反比例函数属于奇函数,有f(—x)=—f(x),图像关于原点对称。

  另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

  如图,上面给出了k分别为正和负(2和—2)时的函数图像。

  当K0时,反比例函数图像经过一,三象限,是减函数

  当K0时,反比例函数图像经过二,四象限,是增函数

  反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

  知识点:

  1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。

  2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(xm)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

函数知识点总结14

  1.①与(0°≤<360°)终边相同的角的集合(角与角的终边重合):|k360,kZ

  ②终边在x轴上的角的集合:|k180,kZ③终边在y轴上的角的集合:|k18090,kZ

  ④终边在坐标轴上的角的集合:|k90,kZ

  ⑤终边在y=x轴上的角的集合:|k18045,kZ⑥终边在yx轴上的角的集合:|k18045,kZ

  ⑦若角与角的终边关于x轴对称,则角与角的关系:360k

  ⑧若角与角的终边关于y轴对称,则角与角的关系:360k180

  ⑨若角与角的终边在一条直线上,则角与角的关系:180k

  ⑩角与角的终边互相垂直,则角与角的关系:360k902.角度与弧度的互换关系:360°=2180°=1°=0.017451=57.30°=57°18′3、弧长公式:l||r.扇形面积公式:s12扇形2lr12||r

  2、三角函数在各象限的符号:(一全二正弦,三切四余弦)

  yy+y+-+-+-o-x-o+x+o-x正弦、余割余弦、正割正切、余切

  3.三角函数的定义域:

  三角函数定义域f(x)sinxx|xRf(x)cosxx|xRf(x)tanxx|xR且xk1,kZ2

  f(x)cotxx|xR且xk,kZ

  4、同角三角函数的基本关系式:

  sincostan

  cossincot

  tancot1sin2cos217、诱导公式:

  把k2“奇变偶不变,符号看象限”的三角函数化为的三角函数,概括为:三角函数的公式:

  (一)基本关系

  公式组一sinxcscx=1tanx=sinx22

  cosxsinx+cosx=1cosxsecx=1x=cosx2sinx1+tanx=sec2xtanxcotx=11+cot2x=csc2x

  公式组二公式组三

  sin(2kx)sinxsin(x)sinxcos(2kx)cosxcos(x)cosxtan(2kx)tanxtan(x)tanxcot(2kx)cotxcot(x)cotx

  公式组四公式组五sin(x)sinxsin(2x)sinxcos(x)cosxcos(2x)cosxtan(x)tanxtan(2x)tanxcot(x)cotx

  cot(2x)cotx(二)角与角之间的互换

  cos()coscossinsincos()coscossinsin

  公式组六

  sin(x)sinxcos(x)cosxtan(x)tanx

  cot(x)cotxsin22sincos-2-

  cos2cos2sin2cos112sin

  2tan1tan2222sin()sincoscossintan2sin()sincoscossintan()tantan1tantan

  tantan1tantan

  tan()

  5.正弦、余弦、正切、余切函数的图象的`性质:

  ysinxycosxytanxycotxyAsinx(A、>0)定义域RR值域周期性奇偶性单调性[1,1][1,1]1x|xR且xk,kZ2x|xR且xk,kZRRR奇函数A,A22奇函数2当当0,非奇非偶奇函数偶函数奇函数0,上为上为上为增函上为增函数;上为增增函数;增函数;数;上为减函数函数;上为减函数上为减上为减上为减函数函数函数注意:①ysinx与ysinx的单调性正好相反;ycosx与ycosx的单调性也同样相反.一般地,若yf(x)在[a,b]上递增(减),则yf(x)在[a,b]上递减(增).②ysinx与的ycosx周期是.

  ▲y

  Ox

  0)的周期T③ysin(x)或yx2cos(x)(2.

  ytan的周期为2(TT2,如图,翻折无效).

  ④ysin(x)的对称轴方程是xk2(

  kZ),对称中心(

  12k,0);

  ycos(x)的对称轴方程是xk(

  kZ),对称中心(k,0);

  yatn(

  x)的对称中心(

  k2,0).

  三角函数图像

  数y=Asin(ωx+φ)的振幅|A|,周期T2||,频率f1T||2,相位x;初

  相(即当x=0时的相位).(当A>0,ω>0时以上公式可去绝对值符号),

  由y=sinx的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y=Asinx的图象,叫做振幅变换或叫沿y轴的伸缩变换.(用y/A替换y)

  由y=sinx的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的|1|倍,得到y=sinωx的图象,叫做周期变换或叫做沿x轴的伸缩变换.(用

  ωx替换x)

  由y=sinx的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y=sin(x+φ)的图象,叫做相位变换或叫做沿x轴方向的平移.(用x+φ替换x)

  由y=sinx的图象上所有的点向上(当b>0)或向下(当b<0)平行移动|b|个单位,得到y=sinx+b的图象叫做沿y轴方向的平移.(用y+(-b)替换y)

  由y=sinx的图象利用图象变换作函数y=Asin(ωx+φ)(A>0,ω>0)(x∈R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x轴量伸缩量的区别。

函数知识点总结15

  一、函数

  (1)定义:设在某变化过程中有两个变量x、y,对于x的每一个值,y都有唯一的值与之对应,那么就说x是自变量,y是因变量,此时,也称y是x的函数。

  (2)本质:一一对应关系或多一对应关系。

  有序实数对平面直角坐标系上的点

  (3)表示方法:解析法、列表法、图象法。

  (4)自变量取值范围:

  对于实际问题,自变量取值必须使实际问题有意义;

  对于纯数学问题,自变量取值必须保证函数关系式有意义:

  ①分式中,分母≠0;

  ②二次根式中,被开方数≥0;

  ③整式中,自变量取全体实数;

  ④混合运算式中,自变量取各解集的公共部份。

  二、正比例函数与反比例函数

  两函数的.异同点

  三、一次函数(图象为直线)

  (1)定义式:y=kx+b(k、b为常数,k≠0);自变量取全体实数。

  (2)性质:

  ①k>0,过第一、三象限,y随x的增大而增大;

  k<0,过第二、四象限,y随x的增大而减小。

  ②b=0,图象过(0,0);

  b>0,图象与y轴的交点(0,b)在x轴上方;

  b<0,图象与y轴的交点(0,b)在x轴下方。

  四、二次函数(图象为抛物线)

  (1)自变量取全体实数

  一般式:y=ax2+bx+c(a、b、c为常数,a≠0),其中(0,c)为抛物线与y轴的交点;

  顶点式:y=a(x—h)2+k(a、h、k为常数,a≠0),其中(h,k)为抛物线顶点;

  h=—,k=零点式:y=a(x—x1)(x—x2)(a、x1、x2为常数,a≠0)其中(x1,0)、(x2,0)为抛物线与x轴的交点。x1、x2 =(b 2 —4ac ≥0)

  (2)性质:

  ①对称轴:x=—或x=h;

  ②顶点:(—,)或(h,k);

  ③最值:当x=—时,y有最大(小)值,为或当x=h时,y有最大(小)值,为k;

【函数知识点总结】相关文章:

函数知识点总结02-10

函数知识点总结06-23

(精)函数知识点总结08-25

[精华]函数知识点总结08-28

函数知识点总结【热门】08-21

(实用)函数知识点总结09-21

[集合]函数知识点总结09-19

函数知识点总结(热门)09-19

函数知识点总结(实用)09-20

【优秀】函数知识点总结09-20