物理知识点总结

时间:2024-09-28 15:15:58 知识点总结 我要投稿

物理知识点总结通用15篇

  总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以给我们下一阶段的学习和工作生活做指导,为此我们要做好回顾,写好总结。那么如何把总结写出新花样呢?下面是小编精心整理的物理知识点总结,欢迎阅读,希望大家能够喜欢。

物理知识点总结通用15篇

物理知识点总结1

  1、定义:物体在受到两个力的作用时,如果能保持静止状态或匀速直线运动状态称二力平衡。

  2、二力平衡条件:二力作用在同一物体上、大小相等、方向相反、两个力在一条直线上

  概括:二力平衡条件用八个字概括“同体、等大、反向、共线”

  3、平衡力与相互作用力比较:

  相同点:①大小相等

  ②方向相反

  ③作用在一条直线上。不同点:平衡力作用在一个物体上可以是不同性质的力;相互力作用在不同物体上是相同性质的力。

  4、力和运动状态的关系:

  物体受力条件物体运动状态说明

  力不是产生(维持)运动的原因

  受非平衡力

  合力不为0

  力是改变物体运动状态的原因

  5、应用:应用二力平衡条件解题要画出物体受力示意图。

  画图时注意:

  ①先画重力然后看物体与那些物体接触,就可能受到这些物体的.作用力

  ②画图时还要考虑物体运动状态。

  物体受到两个力的作用时,如果保持静止状态或匀速直线运动状态,则这两个力平衡。力和运动的关系

  (1)不受力或受平衡力物体保持静止或做匀速直线运动

  (2)受非平衡力运动状态改变

  6、运动状态改变,一定有力作用在物体上,并且是不平衡的力。

  7、有力作用在物体上,运动状态不一定改变。

物理知识点总结2

  一、知识点

  (一)能、势能、动能的概念

  (二)功

  1功的定义、定义式及其计算

  2正功和负功的判断:力与位移夹角角度、动力学角度

  (三)功率

  1功率的定义、定义式

  2额定功率、实际功率的概念

  3功率与速度的关系式:瞬时功率、平均功率

  4功率的计算:力与速度角度、功与时间角度

  (四)重力势能

  1重力做功与路径无关

  2重力势能的表达式

  3重力做功与重力势能的关系式

  4重力势能的相对性:零势能参考平面

  5重力势能系统共有

  (五)动能和动能定理

  1动能的表达式

  2动能定理的内容、表达式

  (六)机械能守恒定律:内容、表达式

  二、重点考察内容、要求及方式

  1正负功的判断:夹角角度、动力学角度:力对物体产生的'加速度与物体运动方向一致或相反,导致物体加速或减速,动能增大或减小(选择、判断)

  2功的计算:重力做功、合外力做功(动能定理或功的定义角度)(填空、计算)

  3功率的计算:力与速度角度、功与时间角度(填空、计算)

  4机车启动模型:功率与速度、力的关系式;运动学规律(填空、计算)

  5动能定理与受力分析:求牵引力、阻力;要求正确受力分析、运动学规律(计算)

  6机械能守恒定律应用:机械能守恒定律表达式、设定零势能参考平面;求解动能、高度等。

  必修二物理学习方法

  重视物理概念

  初中将学习大量的重要的物理概念、规律,而这些概念、规律,是解决各类问题的基础,因此要真正理解和掌握,应力求做到“五会”:

  会表述:能熟记并正确地叙述概念、规律的内容。

  能表达:明确概念、规律的表达公式及公式中每个符号的科学意义。

  会理解:能控制公式的利用范围和使用条件。

  会变形:会对公式进行精确变形,并理解变形后的含义。

  能应用:能应用概念和公式进行简单的判断、推理和计算。

  必修二物理学习技巧

  (1)立足课堂,夯实基础。课堂是学习物理基础知识和基本技能的主阵地,只有把握课堂,抓牢“双基”,学习必要的方法,才会有拓展、提高的可能。

  (2)注重探究过程,学习研究方法。物理是一门实验科学,学习物理要注重科学探究的过程,对于每一个实验探究不仅要知道怎样做,而且要理解为什么要这样做,并能对探究过程和结果作出适当的评估;除了学习物理知识,还应学习相关的研究方法,如:转化法,控制变量法,对比法,理想实验推理法,归纳法、等效法、类比法、建立理想模型法等。(3)强化训练,提高知识的迁移应用能力。课外适当做一些补充练习是消化、巩固所学知识,拓展提高的一种较为有效的措施。在解题过程中注意培养、提高审题能力。

  (4)优化学习方法,提高学习效率。如遇到学习的难点、疑点,由于初三阶段的学习较为紧张,不能花很多的时间去慢慢“磨”,应做好标记,跟同学讨论,最好求得老师的解答,理解过程,掌握方法。

  (5)归纳概括、串前联后,形成综合能力。在平时的学习过程中,对所学的知识进行必要的归纳总结,并将新学的知识和前面的内容联系起来,注意它们的相同点与不同点,做到前后贯通。如学习功率的概念时可以对照已经学过的速度概念进行综合思考。

  (6)规范解答,注意细节。“规范”在考试中主要体现在简答题、作图题、计算题中。历年中考中,因解答不规范而失分的情况屡见不鲜。

物理知识点总结3

  1.α粒子散射试验结果

  大多数的α粒子不发生偏转;

  少数α粒子发生了较大角度的偏转;

  极少数α粒子出现大角度的偏转(甚至反弹回来)

  2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构)

  3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:hν=E初-E末{能级跃迁}

  4.原子核的组成:质子和中子(统称为核子),{A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数}

  5.天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长极短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。γ射线是伴随α射线和β射线产生的`。

  6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度}

  7.核能的计算ΔE=Δmc2{当Δm的单位用kg时,ΔE的单位为J;当Δm用原子质量单位u时,算出的ΔE单位为uc2;1uc2=931.5MeV}。

物理知识点总结4

  物体与质点

  1、质点:当物体的大小和形状对所研究的问题而言影响不大或没有影响时,为研究问题方便,可忽略其大小和形状,把物体看做一个有质量的点,这个点叫做质点。

  2、物体可以看成质点的条件

  条件:

  ①研究的物体上个点的运动情况完全一致。

  ②物体的线度必须远远的大于它通过的距离。

  (1)物体的形状大小以及物体上各部分运动的差异对所研究的问题的影响可以忽略不计时就可以把物体当作质点

  (2)平动的物体可以视为质点

  平动的物体上各个点的运动情况都完全相同的物体,这样,物体上任一点的运动情况与整个物体的运动情况相同,可用一个质点来代替整个物体。

  小贴士:质点没有大小和形状因为它仅仅是一个点,但是质点一定有质量,因为它代表了一个物体,是一个实际物体的理想化的模型。质点的质量就是它所代表的物体的质量。

  参考系

  1、参考系的定义:描述物体的运动时,用来做参考的另外的物体。

  2、对参考系的理解:

  (1)物体是运动还是静止,都是相对于参考系而言的,例如,肩并肩一起走的两个人,彼此就是相对静止的,而相对于路边的建筑物,他们却是运动的。

  (2)同一运动选择不同的参考系,观察结果可能不同。例如司机开着车行驶在高速公路上以车为参考系,司机是静止的,以路面为参考系,司机是运动的。

  (3)比较物体的运动,应该选择同一参考系。

  (4)参考系可以是运动的物体,也可以是静止的物体。

  小贴士:只有选择了参考系,说某个物体是运动还是静止,物体怎样运动才变得有意义参考系的选择是研究运动的前提是一项基本技能。

  坐标系

  1、坐标系物理意义:在参考系上建立适当的坐标系,从而,定量地描述物体的`位置及位置变化。

  2、坐标系分类:

  (1)一维坐标系(直线坐标系):适用于描述质点做直线运动,研究沿一条直线运动的物体时,要沿着运动直线建立直线坐标系,即以物体运动所沿的直线为x轴,在直线上规定原点、正方向和单位长度。例如,汽车在平直公路上行驶,其位置可用离车站(坐标原点)的距离(坐标)来确定。

  (2)二维坐标系(平面直角坐标系)适用于质点在平面内做曲线运动。例如,运动员推铅球以铅球离手时的位置为坐标原点,沿铅球初速方向建立x轴,竖直向下建立y轴,铅球的坐标为铅球离开手后的水平距离和竖直距离。

  (3)三维坐标系(空间直角坐标系):适用于物体在三维空间的运动。例如,篮球在空中的运动。

  高中物理学业水平考知识点总结4

  1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

  2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

  3.电阻、电阻定律:R=ρL/S{ρ:电阻(Ω/m),L:导体的长度(m),S:导体横截面积(m2)}

  4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

  5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

  6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

  7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R

  8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

  9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)

  电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+

  电流关系I总=I1=I2=I3I并=I1+I2+I3+

  电压关系U总=U1+U2+U3+U总=U1=U2=U3

  功率分配P总=P1+P2+P3+P总=P1+P2+P3+

  10.欧姆表测电阻

  (1)电路组成

  (2)测量原理

  两表笔短接后,调节Ro使电表指针满偏,得Ig=E/(r+Rg+Ro)

  接入被测电阻Rx后通过电表的电流为Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)

  由于Ix与Rx对应,因此可指示被测电阻大小

  (3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

  (4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

物理知识点总结5

  力是物体间的相互作用

  1.力的国际单位是牛顿,用N表示;

  2.力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;

  3.力的示意图:用一个带箭头的线段表示力的方向;

  4.力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;

  重力:由于地球对物体的吸引而使物体受到的力;

  a.重力不是万有引力而是万有引力的一个分力;

  b.重力的方向总是竖直向下的(垂直于水平面向下)

  c.测量重力的仪器是弹簧秤;

  d.重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心;

  弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力;

  a.产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力;

  b.弹力包括:支持力、压力、推力、拉力等等;

  c.支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向;

  d.在弹性限度内弹力跟形变量成正比;F=Kx

  摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力;

  a.产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力;

  b.摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;

  c.滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力;

  d.静摩擦力的大小等于使物体发生相对运动趋势的外力;

  合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力;

  a.合力与分力的作用效果相同;

  b.合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力;

  c.合力大于或等于二分力之差,小于或等于二分力之和;

  d.分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法);

  矢量

  矢量:既有大小又有方向的物理量(如:力、位移、速度、加速度、动量、冲量)

  标量:只有大小没有方向的物力量(如:时间、速率、功、功率、路程、电流、磁通量、能量)

  直线运动

  物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零;

  (1)在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向;

  (2)在N个共点力作用下物体处于`平衡状态,则任意第N个力与(N-1)个力的合力等大反向;

  (3)处于平衡状态的物体在任意两个相互垂直方向的合力为零;

  机械运动:

  一物体相对其它物体的位置变化。

  1.参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止);

  2.质点:只考虑物体的质量、不考虑其大小、形状的物体;

  (1)质点是一理想化模型;

  (2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时;

  如:研究地球绕太阳运动,火车从北京到上海;

  3.时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段;

  例:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔;

  4.位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线;

  (1)位移为零、路程不一定为零;路程为零,位移一定为零;

  (2)只有当质点作单向直线运动时,质点的位移才等于路程;

  (3)位移的国际单位是米,用m表示

  5.位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移;

  (1)匀速直线运动的位移图像是一条与横轴平行的直线;

  (2)匀变速直线运动的位移图像是一条倾斜直线;

  (3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大;

  6.速度是表示质点运动快慢的物理量

  (1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度;

  (2)速率只表示速度的大小,是标量;

  7.加速度:是描述物体速度变化快慢的物理量;

  (1)加速度的定义式:a=vt-v0/t

  (2)加速度的大小与物体速度大小无关;

  (3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零;

  (4)速度改变等于末速减初速。加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关;

  (5)加速度是矢量,加速度的方向和速度变化方向相同;

  (6)加速度的国际单位是m/s2

  匀变速直线运动

  1.速度:匀变速直线运动中速度和时间的关系:vt=v0+at

  注:一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值;

  (1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均;

  (2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均;

  2.位移:匀变速直线运动位移和时间的关系:s=v0t+1/2at2

  注意:当物体作加速运动时a取正值,当物体作减速运动时a取负值;

  3.推论:2as=vt2-v02

  4.作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植:s2-s1=aT2

  5.初速度为零的匀加速直线运动:前1秒,前2秒,……位移和时间的关系是:位移之比等于时间的平方比;第1秒、第2秒……的位移与时间的关系是:位移之比等于奇数比;

  自由落体运动

  只在重力作用下从高处静止下落的物体所作的运动。

  1.位移公式:h=1/2gt2

  2.速度公式:vt=gt

  3.推论:2gh=vt2

  牛顿定律

  1.牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。

  a.只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态;

  b.力是该变物体速度的原因;

  c.力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)

  d力是产生加速度的原因;

  2.惯性:物体保持匀速直线运动或静止状态的`性质叫惯性。

  a.一切物体都有惯性;

  b.惯性的大小由物体的质量唯一决定;

  c.惯性是描述物体运动状态改变难易的物理量;

  3.牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。

  a.数学表达式:a=F合/m;

  b.加速度随力的产生而产生、变化而变化、消失而消失;

  c.当物体所受力的方向和运动方向一致时,物体加速;当物体所受力的方向和运动方向相反时,物体减速。

  d.力的单位牛顿的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1N;

  4.牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的;

  a.作用力和反作用力同时产生、同时变化、同时消失;

  b.作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上;

  曲线运动·万有引力

  质点的运动轨迹是曲线的运动

  1.曲线运动中速度的方向在时刻改变,质点在某一点(或某一时刻)的速度方向是曲线在这一点的切线方向

  2.质点作曲线运动的条件:质点所受合外力的方向与其运动方向不在同一条直线上;且轨迹向其受力方向偏折;

  3.曲线运动的特点

  曲线运动一定是变速运动;

  曲线运动的加速度(合外力)与其速度方向不在同一条直线上;

  4.力的作用

  力的方向与运动方向一致时,力改变速度的大小;

  力的方向与运动方向垂直时,力改变速度的方向;

  力的方向与速度方向既不垂直,又不平行时,力既搞变速度大小又改变速度的方向;

  运动的合成与分解

  1.判断和运动的方法:物体实际所作的运动是合运动

  2.合运动与分运动的等时性:合运动与各分运动所用时间始终相等;

  3.合位移和分位移,合速度和分速度,和加速度与分加速度均遵守平行四边形定则;

  平抛运动

  被水平抛出的物体在在重力作用下所作的运动叫平抛运动。

  1.平抛运动的实质:物体在水平方向上作匀速直线运动,在竖直方向上作自由落体运动的合运动;

  2.水平方向上的匀速直线运动和竖直方向上的自由落体运动具有等时性;

  3.求解方法:分别研究水平方向和竖直方向上的二分运动,在用平行四边形定则求和运动;

  养成良好的物理学习习惯

  第一,要有清晰的学习思路。

  首先要做好课前预习,这样就知道自己哪里不会、哪里掌握的不牢,这样,跟着老师的思路学习一遍,就能掌握十之八、九。预习之所以有效,就是因为通过预习理清了学习思路,明确自己的学习目标,在老师的帮助下,就能沿着正确的思路走,达到熟练掌握知识的目的。

  第二,深挖课本,提炼精华。

  书上有内容的引入,推导,吸取书中的精华。这个过程,就是所谓,“把书读薄了”,然后,再对理解的内容进行扩展,推论,变成自己的理解,这就是所谓“把书读厚了”的过程,在脑子里,书从厚到薄再到厚,就是两次不同层次的深化。

  第三,不要忽略复习的影响。

  物理作为理科类,知识都是一环扣一环,一定要定时查漏补缺。如果前面的知识有漏洞,这样就很容易影响到后面知识内容的学习。学习之后,可以通过做题,培养解题的感觉,对上课所学知识进行归纳,加深印象。根据艾宾浩斯遗忘曲线,建议在学完知识的两三天后,一般我们可以选择周末,进行知识回顾,真正弄懂所学知识,而且还要学会计算。一旦形成了体系,脑中建立了模型,比如板块模型,带点杆模型,复合场模型。考试中,就信手拈来,行云流水。

  第四,结成学习帮扶小组。

  和同学一起探讨,一起学习,也能一起进步,通过帮扶小组,不仅能让知识更扎实,同时也丰富自己的学习生活,让学习变得更有趣。

  物理学习方法与技巧有哪些

  一、培养学习兴趣

  爱因斯坦说过:兴趣是最好的老师。作为刚刚向物理学宫迈进的学生,首先需要的是兴趣。自然界万物的运动和变化,以及人们创造的一切,都是我们兴趣的取之不竭的源泉。让我们在自己的心灵中点燃起强烈的求知的火花,以浓厚的兴趣进入物理的大千世界,在学习中体验自己智慧的力量,体验求得知识的欢乐。

  学好初中物理其实就是探索实践乃至宇宙的第一步,不论是力学还是电磁学都充满了科学的味道。在我们的周围,大至整个宇宙,小至我们身边,无时无刻不在发生种种的物理现象。只有对物理保持浓厚的学习兴趣,才能真正学好物理。

  二、善于思考

  没有积极的思考、不可能真正理解物理概念和原理。我们从初中开始,就要养成积极动脑筋想问题的习惯。

  要理解和掌握好物理概念,就要研究和思考这个概念是怎样引入的?定义如何?有什么物理意义?例如对于电阻,要搞清楚:根据什么实验事实而引入电阻概念?电阻的定义是什么?它的单位是怎样规定的?怎样测量导体的电阻?等等。

  有比较才能鉴别。应用对比法,是我们在学习物理过程中,分清一些概念和规律的区别,使它们不会混淆起来,从而正确地理解这些概念和规律的一种好方法。

  三、重视物理实验

  实验,在学习物理学中是非常重要的一环,它能加深我们对物理知识的理解和培养能力。在实验中应通过自己动手,边观察、边分析、边总结,解决下面的问题:

  1.通过实验,对许多抽象的物理概念和定律有丰富生动的感性认识,从而易于理解。如物质的三态变化,从固态到液态要吸热,晶体熔解时温度不变,这些现象通过苯的熔解实验后,将深信不疑,印象深刻。

  2.通过动手操作,更仔细地认识各种物理仪器、装置的构造和性能,知道怎样正确使用常用仪器。物理实验使用的各种基本仪表和装置,就是今后工农业生产和科研中使用的各种仪器装置的基础,今天学会了操作,将来就有了操作的技能基础。

  3.在实验中掌握一些基本测量方法。例如测定细小金属丝的直径,采用多绕很多圈来测量的"以大量小"法;在测定未知电阻值时可以用"替代法","比较法";为了减少实验误差进行多次测量求平均值等等。这些实验的基本方法都将大大提高我们的实验能力。

  4.在实验中应养成良好的实验习惯。遵守实验室纪律,爱护仪器;实验课前做好预习;实验时认真操作,细心观察,忠实记录,按时完成;保持清洁,做好收尾工作,完成实验报告。养成这些良好的实验习惯和品质,将来才可能成为一个优秀的生产者和科学工作者。

  四、课堂听讲是关键

  听课是学习物理的关键环节,那么,该怎么听课呢,上课的时候又该听什么,其实大家只需要注意这五点,物理知识基本就能掌握了。

  ①知识是怎样引出的。

  ②知识是怎样得来的(注重研究过程)。

  ③知识内容是什么。

  ④所学知识概念怎样理解。

  ⑤所学知识在生活、生产中有什么应用。

  五、精读课本

  我们所学知识基本上都来自课本,所以通过读书才能对知识的来龙去脉有全面的了解。读书的过程就是对物理知识加深理解的过程。要同时阅读几本参考书,通过对比,对某一知识加深理解。在读书时还应对重点知识、概念、规律、定义、公式在理解的基础上强化记忆。

  六、建立知识体系

  在读书基础上打破章节界限,按知识条块归类,并建立相关的知识体系,将各知识点之间的内在联系弄清楚,由点到面形成知识网络。建立知识体系的过程也就是提高综合能力的过程,也是使物理复习质量升华的过程。

  物理高效复习法简介

  首先,要理解基本概念,掌握基本公式。

  物理作为理科科目在期末复习过程中要重视基础。如果基础没有打牢,再出色的成绩也是靠不住的,在复习的过程中,我们要把课本上的基本概念、公式、实验在理解的基础上,全部看一遍,对于不完全掌握的知识点你一定要在考试前弄懂、弄会。通常情况下,成绩中等的同学大部分是基础不牢,建议大家将重点放在课本上。

  第二,结合错题本进行专项复习

  错题本就是汇集了我们一学期所有错题的集合,这里能真实的反映出我们知识的薄弱点在哪里,把错题本上的错题再有选择的做一遍,看一下还错在哪里,然后进行重点修改,这样可以查漏补缺,用最快的速度让自己补齐短板。

  专项练习中我们也可以对一些常考的题型进行重点练习,有一些题的题型在变,但是解题思路不变,这样我们就能以不变应万变,不仅能够对所学提醒进行归纳整理,也能帮助我们提升复习效果。

  第三,熟悉实验流程,掌握实验原理。

  物理是一门实验性非常强的学科,我们在平时的学习、考试中总会遇到这样或者那样的实验,千万不要以为这些实验没用,一个完整的实验要从实验筹划开始、到实验器材准备、实验原理、实验过程、实验结果、实验报告,整个过程都有可能成为考试的考点,因此在期末考试前我们将本学期学到的物理实验进行系统梳理,达到每提到一个实验都会在脑海中形成一个流程,这样实验部分的分数我们就能得到大半。

  此外,物理的计算要依赖数学,特别是一些解题方法,和数学有高度的类似,因此,想要学好物理,必须学好数学。

  怎么加深对物理实验的理解

  一要提前看。在实验之前,我们就要提前通过课本了解实验的目的、用到的器材及使用方法、涉及到的原理,同时要仔细阅读教材上的实验步骤,争取做到离开课本也能做实验。

  二要规范做。做实验时,要严格遵守操作流程,严格按照教材的操作步骤认真执行,不能自由发挥,随心所欲。如有安全隐患,要做好安全防范措施。

  三要总结好。物理课上真正做实验的机会非常少,所以一定要认真归纳、总结。详细记录实验过程、现象,以及最后得出的实验结论。

  目前,初中涉及到的实验有天平测重量、弹簧测力计测力大小、压力与压强的实验、杠杆实验、电流电压的实验、光的折射和反射实验等等,每一个实验都是通过一个物理现象来说明一个物理原理。物理实验中常见的物理实验方法总计有4种,这里为大家简单介绍一下:

  1、控制变量法,这是最常见的一种实验方法,通过更改某一个变量,来改变实验结果,从而达到实验目的。

  2、图像法,通过制作表格或者是画图的方式,来直观的表示实验过程、结果,比如:电压、电流的实验、或者是压力、摩擦力等实验。

  3、转换法,通过对实验现象的转化,变得更加通俗易懂,比如:磁场的实验、分子扩散的实验。

  4、类比法,有一些实验如果用其他的事物代替一下会更加的形象,比如:水流VS电流,等效电路等。

物理知识点总结6

  有机物的溶解性

  (1)难溶于水的有:各类烃、卤代烃、硝基化合物、酯、绝大多数高聚物、高级的(指分子中碳原子数目较多的,下同)醇、醛、羧酸等。

  (2)易溶于水的有:低级的[一样指N(C)≤4]醇、(醚)、醛、(XX)、羧酸及盐、氨基酸及盐、单糖、二糖。(它们都能与水形成氢键)。

  (3)具有特别溶解性的:

  ①乙醇是一种很好的溶剂,既能溶解许多无机物,又能溶解许多有机物,所以常用乙醇

  来溶解植物色素或其中的药用成分,也常用乙醇作为反应的`溶剂,使参加反应的有机物和无机物均能溶解,增大接触面积,提高反应速率。例如,在油脂的皂化反应中,加入乙醇既能溶解NaOH,又能溶解油脂,让它们在均相(同一溶剂的溶液)中充分接触,加快反应速率,提高反应限度。

  ②苯酚:室温下,在水中的溶解度是9.3g(属可溶),易溶于乙醇等有机溶剂,当温度高高中化学选修5于65℃时,能与水混溶,冷却后分层,上层为苯酚的水溶液,下层为水的苯酚溶液,振荡后形成乳浊液。苯酚易溶于碱溶液和纯碱溶液,这是由于生成了易溶性的钠盐。

  ③乙酸乙酯在饱和碳酸钠溶液中更加难溶,同时饱和碳酸钠溶液还能通过反应吸取挥发出的乙酸,溶解吸取挥发出的乙醇,便于闻到乙酸乙酯的香味。

  ④有的淀粉、蛋白质可溶于水形成胶体。蛋白质在浓轻金属盐(包括铵盐)溶液中溶解度减小,会析出(即盐析,皂化反应中也有此操作)。但在稀轻金属盐(包括铵盐)溶液中,蛋白质的溶解度反而增大。

  ⑤线型和部分支链型高聚物可溶于某些有机溶剂,而体型则难溶于有机溶剂。

  ⑥氢氧化铜悬浊液可溶于多羟基化合物的溶液中,如甘油、葡萄糖溶液等,形成绛蓝色溶液。

物理知识点总结7

  一、光现象的相关内容归纳

  1、光源:自身能够发光的物体叫光源。

  2、太阳光是由红、橙、黄、绿、蓝、靛、紫组成的。

  3、光的三原色是:红、绿、蓝;颜料的三原色是:红、黄、蓝。

  4、不可见光包括有:红外线和紫外线。特点:红外线能使被照射的物体发热,具有热效应(如太阳的热就是以红外线传送到地球上的);紫外线最显著的性质是能使荧光物质发光,另外还可以灭菌。

  5、光的'直线传播:光在均匀介质中是沿直线传播。

  6、光在真空中传播速度最大,是3×108米/秒,而在空气中传播速度也认为是3×108米/秒。

  7、我们能看到不发光的物体是因为这些物体反射的光射入了我们的眼睛。

  8、光的反射定律:反射光线与入射光线、法线在同一平面上,反射光线与入射光线分居法线两侧,反射角等于入射角。(注:光路是可逆的)

  9、漫反射和镜面反射一样遵循光的反射定律。

  10、平面镜成像特点:(1)平面镜成的是虚像;(2)像与物体大小相等;(3)像与物体到镜面的距离相等;(4)像与物体的连线与镜面垂直。另外,平面镜里成的像与物体左右倒置。

  11、平面镜应用:(1)成像;(2)改变光路。

  12、平面镜在生活中使用不当会造成光污染。

  13、球面镜包括凸面镜(凸镜)和凹面镜(凹镜),它们都能成像。具体应用有:车辆的后视镜、商场中的反光镜是凸面镜;手电筒的反光罩、太阳灶、医术戴在眼睛上的反光镜是凹面镜。

  二、光的折射知识归纳

  光的折射:光从一种介质斜射入另一种介质时,传播方向一般发生变化的现象。

  光的折射规律:光从空气斜射入水或其他介质,折射光线与入射光线、法线在同一平面上;折射光线和入射光线分居法线两侧,折射角小于入射角;入射角增大时,折射角也随着增大;当光线垂直射向介质表面时,传播方向不改变。(折射光路也是可逆的)

  凸透镜:中间厚边缘薄的透镜,它对光线有会聚作用,所以也叫会聚透镜。

  凸透镜成像:

  (1)物体在二倍焦距以外(u>2f),成倒立、缩小的实像(像距:f

  (2)物体在焦距和二倍焦距之间(f

  (3)物体在焦距之内(u

  光路图:

  1、作光路图注意事项:

  (1)。要借助工具作图;(2)是实际光线画实线,不是实际光线画虚线;(3)光线要带箭头,光线与光线之间要连接好,不要断开;(4)作光的反射或折射光路图时,应先在入射点作出法线(虚线),然后根据反射角与入射角或折射角与入射角的关系作出光线;(5)光发生折射时,处于空气中的那个角较大;(6)平行主光轴的光线经凹透镜发散后的光线的反向延长线一定相交在虚焦点上;(7)平面镜成像时,反射光线的反向延长线一定经过镜后的像;(8)画透镜时,一定要在透镜内画上斜线作阴影表示实心。

  2、人的眼睛像一架神奇的照相机,晶状体相当于照相机的镜头(凸透镜),视网膜相当于照相机内的胶片。

  3、近视眼看不清远处的景物,需要配戴凹透镜;远视眼看不清近处的景物,需要配戴凸透镜。

  4、望远镜能使远处的物体在近处成像,其中伽利略望远镜目镜是凹透镜,物镜是凸透镜;开普勒望远镜目镜物镜都是凸透镜(物镜焦距长,目镜焦距短)。

  5、显微镜的目镜物镜也都是凸透镜(物镜焦距短,目镜焦距长)。

  中考物理电学知识点

  1、电荷的定向移动形成电流(金属导体里自由电子定向移动的方向与电流方向相反),规定正电荷的'定向移动方向为电流方向。

  2、电流表不能直接与电源相连。

  3、电压是形成电流的原因,安全电压应不高于36V,家庭电路电压220V。

  4、金属导体的电阻随温度的升高而增大(玻璃温度越高电阻越小)。

  5、能导电的物体是导体,不能导电的物体是绝缘体(错,“容易”,“不容易”)。

  6、在一定条件下导体和绝缘体是可以相互转化的。

  7、影响电阻大小的因素有:材料、长度、横截面积、温度(温度有时不考虑)。

  8、滑动变阻器和电阻箱都是靠改变接入电路中电阻丝的长度来改变电阻的。

  9、利用欧姆定律公式要注意I、U、R三个量是对同一段导体而言的。

  10、伏安法测电阻原理:R=U/I伏安法测电功率原理:P=UI。

  11、串联电路中:电压、电功、电功率、电热与电阻成正比并联电路中:电流、电功、电功率、电热与电阻成反比。

  12、在生活中要做到:不接触低压带电体,不靠近高压带电体。

  13、开关应连接在用电器和火线之间。两孔插座(左零右火),三孔插座(左零右火上地)。

  14、“220V100W”的灯泡比“220V40W”的灯泡电阻小,灯丝粗。

  15、家庭电路中,用电器都是并联的,多并一个用电器,总电阻减小,总电流增大,总功率增大。

  16、家庭电路中,电流过大,保险丝熔断,产生的原因有两个:①短路②总功率过大。

  17、磁体自由静止时指南的一端是南极(S极),指北的一段是北极(N极)。磁体外部磁感线由N极出发,回到S极。

  18、同名磁极相互排斥,异名磁极相互吸引。

  19、地球是一个大磁体,地磁南极在地理北极附近。

  20、磁场的方向:①自由的小磁针静止时N极的指向②该点磁感线的切线方向。

  21、奥斯特试验证明通电导体周围存在磁场(电生磁、电流的磁效应),法拉第发现了电磁感应现象(磁生电、发电机)。

  22、电流越大,线圈匝数越多电磁铁的磁性越强(有铁心比无铁心磁性要强的多)。

  23、电磁继电器的特点:通电时有磁性,断电时无磁性(自动控制)。

  24、发电机是根据电磁感应现象制成的,机械能转化为电能(法拉第)。

  25、电动机是根据通电导体在磁场中要受到力的作用这一现象制成的,电能转化为机械能。

  26、产生感应电流的条件:①闭合电路的一部分导体,②切割磁感线。

  27、磁场是真实存在的,磁感线是假想的。

  28、磁场的基本性质是它对放入其中的磁体有力的作用。

  ☆中考物理力学知识点

  1、力的作用是相互的,施力物体同时也是受力物体。

  2、力的作用效果有两个:①使物体发生形变②使物体的运动状态发生改变。

  3、判断物体运动状态是否改变的两种方法:①速度的大小和方向其中一个改变,或都改变,运动状态改变②如果物体不是处于静止或匀速直线运动状态,运动状态改变。

  4、弹簧测力计是根据拉力越大,弹簧的形变量就越大这一原理制成的。

  5、弹簧测力计不能倒着使用。

  6、重力是由于地球的吸引而产生的,方向总是竖直向下的,浮力的方向总是竖直向上的。

  7、两个力的合力可能大于其中一个力,可能小于其中一个力,可能等于其中一个力。

  8、二力平衡的条件:大小相等、方向相反、作用在同一条直线上,作用在同一个物体上。

  9、相互作用力是A给B的力、B给A的力。

  10、惯性现象:(车突然启动人向后仰、跳远时助跑、拍打衣服上的灰、足球离开脚后向前运动、运动员冲过终点不能立刻停下来,甩掉手上的水)。

  11、物体不受力或受平衡力作用时可能静止也可能保持匀速直线运动。

  12、液体的密度越大,深度越深液体内部压强越大。

  13、连通器两侧液面相平的条件:①同一液体②液体静止。

  14、利用连通器原理:(船闸、茶壶、回水管、水位计、自动饮水器、过水涵洞等)。

  15、大气压现象:(用吸管吸汽水、覆杯试验、钢笔吸水、抽水机等)。

  16、马德保半球试验证明了大气压强的存在,托里拆利试验证明了大气压强的值。

  17、大气压随着高度的增加而减小,气压高沸点高;气压低沸点低。

  18、浮力产生的原因:液体对物体向上和向下压力的合力。

  19、阿基米德原理F浮=G排也适用于气体(浮力的计算公式:F浮=ρ气gV排也适用于气体)。

  20、潜水艇自身的重力是可以改变的,它就是靠改变自身重力来实现下潜、上浮和悬浮的。

  21、密度计放在任何液体中其浮力都不变,都等于它的重力,示数上小下大。

  22、流体流速大的地方压强小(飞机起飞就是利用这一原理)。

  23、功是表示做功多少的物理量,功率是表示做功快慢的物理量,机械效率是有用功和总功的比值,他们之间没有必然的大小关系。但“功率大的机械做功一定快”这句话是正确的。

  24、使用机械能省力或省距离(不能同时省),但任何机械都不能省功(机械效率小于1)。

  25、有用功多,机械效率高(错),额外功少,机械效率高(错),有用功在总功中所占的比例大,机械效率高(对)。

  26、同一滑轮组提升重物越重,机械效率越高(重物不变,减轻动滑轮的重也能提高机械效率)。

  27、测滑轮组机械效率时,弹簧测力计要竖直向上匀速拉动时读数。

  28、降落伞匀速下落时机械能不变(错),考察机械能变化时,划出速度、高度的变化。

  29、用力推车但没推动,是因为推力小于阻力(错,推力等于阻力)。

  30、司机系安全带,是为了防止惯性(错,防止惯性带来的危害)。

物理知识点总结8

  1)匀变速直线运动

  1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as

  3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at

  5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t

  7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

  8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}

  9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

  注:

  (1)平均速度是矢量;

  (2)物体速度大,加速度不一定大;

  (3)a=(Vt-Vo)/t只是量度式,不是决定式;

  (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

  2)自由落体运动

  1.初速度Vo=02.末速度Vt=gt

  3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh

  注:

  (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

  (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

  (3)竖直上抛运动

  1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)

  3.有用推论Vt2-Vo2=-2gs4.上升高度Hm=Vo2/2g(抛出点算起)

  5.往返时间t=2Vo/g(从抛出落回原位置的时间)

  注:

  (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

  (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

  (3)上升与下落过程具有对称性,如在同点速度等值反向等。

  二、质点的运动

  (2)----曲线运动、万有引力

  1)平抛运动

  1.水平方向速度:Vx=Vo2.竖直方向速度:Vy=gt

  3.水平方向位移:x=Vot4.竖直方向位移:y=gt2/2

  5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

  6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

  合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

  7.合位移:s=(x2+y2)1/2,

  位移方向与水平夹角α:tgα=y/x=gt/2Vo

  8.水平方向加速度:ax=0;竖直方向加速度:ay=g

  注:

  (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

  (2)运动时间由下落高度h(y)决定与水平抛出速度无关;

  (3)θ与β的关系为tgβ=2tgα;

  (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

  2)匀速圆周运动

  1.线速度V=s/t=2πr/T2.角速度ω=Φ/t=2π/T=2πf

  3.向心加速度a=V2/r=ω2r=(2π/T)2r4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

  5.周期与频率:T=1/f6.角速度与线速度的关系:V=ωr

  7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

  8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

  注:

  (1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

  (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

  3)万有引力

  1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

  2.万有引力定律:F=Gm1m2/r2(G=6.67×10-11Nm2/kg2,方向在它们的连线上)

  3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天体半径(m),M:天体质量(kg)}

  4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

  5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

  6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

  注:

  (1)天体运动所需的向心力由万有引力提供,F向=F万;

  (2)应用万有引力定律可估算天体的质量密度等;

  (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

  (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

  (5)地球卫星的环绕速度和最小发射速度均为7.9km/s。

  三、力(常见的力、力的合成与分解)

  1)常见的力

  1.重力G=mg(方向竖直向下,g=9.8m/

  s2≈10m/s2,作用点在重心,适用于地球表面附近)

  2.胡克定律F=kx{方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

  3.滑动摩擦力F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

  4.静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为静摩擦力)

  5.万有引力F=Gm1m2/r2(G=6.67×10-11Nm2/kg2,方向在它们的连线上)

  6.静电力F=kQ1Q2/r2(k=9.0×109Nm2/C2,方向在它们的连线上)

  7.电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

  8.安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

  9.洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

  注:

  (1)劲度系数k由弹簧自身决定;

  (2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

  (3)fm略大于μFN,一般视为fm≈μFN;

  (4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;

  (5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);

  (6)安培力与洛仑兹力方向均用左手定则判定。

  2)力的合成与分解

  1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2(F1>F2)

  2.互成角度力的合成:

  F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2

  3.合力大小范围:|F1-F2|≤F≤|F1+F2|

  4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

  注:

  (1)力(矢量)的合成与分解遵循平行四边形定则;

  (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

  (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

  (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

  (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

  四、动力学(运动和力)

  1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

  2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

  3.牛顿第三运动定律:F=-F{负号表示方向相反,F、F各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

  4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}

  5.超重:FN>G,失重:FN

  6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕

  注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

  五、振动和波(机械振动与机械振动的传播)

  1.简谐振动F=-kx{F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}

  2.单摆周期T=2π(l/g)1/2{l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}

  3.受迫振动频率特点:f=f驱动力

  4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕

  5.机械波、横波、纵波〔见第二册P2〕

  6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}

  7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)

  8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大

  9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)

  10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}

  注:

  (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

  (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;

  (3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;

  (4)干涉与衍射是波特有的;

  (5)振动图象与波动图象;

  (6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。

  六、冲量与动量(物体的受力与动量的变化)

  1.动量:p=mv{p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}

  3.冲量:I=Ft{I:冲量(Ns),F:恒力(N),t:力的作用时间(s),方向由F决定}

  4.动量定理:I=Δp或Ft=mvt–mvo{Δp:动量变化Δp=mvt–mvo,是矢量式}

  5.动量守恒定律:p前总=p后总或p=p’也可以是m1v1+m2v2=m1v1+m2v2

  6.弹性碰撞:Δp=0;ΔEk=0{即系统的动量和动能均守恒}

  7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm{ΔEK:损失的动能,EKm:损失的动能}

  8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm{碰后连在一起成一整体}

  9.物体m1以v1初速度与静止的物体m2发生弹性正碰:

  v1=(m1-m2)v1/(m1+m2)v2=2m1v1/(m1+m2)

  10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)

  11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s相对子弹相对长木块的位移}注:

  (1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;

  (2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;

  (3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);

  (4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;

  (5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的.发展和宇宙航行〔见第一册P128〕。

  七、功和能(功是能量转化的量度)

  1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}

  2.重力做功:Wab=mghab{m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}

  3.电场力做功:Wab=qUab{q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}

  4.电功:W=UIt(普适式){U:电压(V),I:电流(A),t:通电时间(s)}

  5.功率:P=W/t(定义式){P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}

  6.汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}

  7.汽车以恒定功率启动、以恒定加速度启动、汽车行驶速度(vmax=P额/f)

  8.电功率:P=UI(普适式){U:电路电压(V),I:电路电流(A)}

  9.焦耳定律:Q=I2Rt{Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}

  10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

  11.动能:Ek=mv2/2{Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

  12.重力势能:EP=mgh{EP:重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}

  13.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}

  14.动能定理(对物体做正功,物体的动能增加):

  W合=mvt2/2-mvo2/2或W合=ΔEK

  {W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}

  15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

  16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP

  注:

  (1)功率大小表示做功快慢,做功多少表示能量转化多少;

  (2)O0≤α<90O做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该

  力不做功);

  (3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少

  (4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=

  1.60×10-19J;_(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。

  八、分子动理论、能量守恒定律

  1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米

  2.油膜法测分子直径d=V/s{V:单分子油膜的体积(m3),S:油膜表面积(m)2}

  3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。

  4.分子间的引力和斥力(1)r

  (2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)

  (3)r>r0,f引>f斥,F分子力表现为引力

  (4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0

  5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}

  6.热力学第二定律

  克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);

  开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}

  7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}注:

  (1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;

  (2)温度是分子平均动能的标志;

  3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;

  (4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;

  (5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大δu>0;吸收热量,Q>0

  (6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

  (7)r0为分子处于平衡状态时,分子间的距离;

  (8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

  九、气体的性质

  1.气体的状态参量:

  温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,

  热力学温度与摄氏温度关系:T=t+273{T:热力学温度(K),t:摄氏温度(℃)}

  体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL

  压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

  2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

  3.理想气体的状态方程:p1V1/T1=p2V2/T2{PV/T=恒量,T为热力学温度(K)}

  注:

  (1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

  (2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

  十、电场

  1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍

  2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109Nm2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

  3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

  4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}

  5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

  6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

  7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

  8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

  9.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

  10.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}

  11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)

  12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

  13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器〔见第二册P111〕

  14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

  15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)

  类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)

  抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m

  注:

  (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

  (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

  (3)常见电场的电场线分布要求熟记〔见图[第二册P98];

  (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

  (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;

  (6)电容单位换算:1F=106μF=1012PF;

  (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;

  (8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。

  十一、恒定电流

  1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

  2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ωm),L:导体的长度(m),S:导体横截面积(m2)}

  4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外

  {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

  5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

  6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

  7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R

  8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

  9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)

  电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+

  电流关系I总=I1=I2=I3I并=I1+I2+I3+

  电压关系U总=U1+U2+U3+U总=U1=U2=U3

  功率分配P总=P1+P2+P3+P总=P1+P2+P3+

  10.欧姆表测电阻

  (1)电路组成(2)测量原理

  两表笔短接后,调节Ro使电表指针满偏,得

  Ig=E/(r+Rg+Ro)

  接入被测电阻Rx后通过电表的电流为

  Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)

  由于Ix与Rx对应,因此可指示被测电阻大小

  (3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

  (4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

  11.伏安法测电阻

  电流表内接法:

  电压表示数:U=UR+UA

  电流表外接法:

  电流表示数:I=IR+IV

  Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)

  选用电路条件Rx>>RA[或Rx>(RARV)1/2]

  选用电路条件Rx<

  12.滑动变阻器在电路中的限流接法与分压接法

  限流接法

  电压调节范围小,电路简单,功耗小

  便于调节电压的选择条件Rp>Rx

  电压调节范围大,电路复杂,功耗较大

  便于调节电压的选择条件Rp

  注1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω

  (2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;

  (3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;

  (4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;5)当外电路电阻等于电源电阻时,电源输出功率,此时的输出功率为E2/(2r);

  (6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。

  十二、磁场

  1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/Am

  2.安培力F=BIL;(注:L⊥B){B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

  3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

  4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

  (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

  (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。注:

  (1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

  (2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册P144〕;(3)其它相关内容:地磁场/磁电式电表原理〔见第二册P150〕/回旋加速器〔见第二册P156〕/磁性材料

  十三、电磁感应

  1.[感应电动势的大小计算公式]

  1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}

  2)E=BLV垂(切割磁感线运动){L:有效长度(m)}

  3)Em=nBSω(交流发电机的感应电动势){Em:感应电动势峰值}

  4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}

  2.磁通量Φ=BS{Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}

  3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

  _4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}

  注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

  十四、交变电流(正弦式交变电流)

  1.电压瞬时值e=Emsinωt电流瞬时值i=Imsinωt;(ω=2πf)

  2.电动势峰值Em=nBSω=2BLv电流峰值(纯电阻电路中)Im=Em/R总

  3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2;I=Im/(2)1/2

  4.理想变压器原副线圈中的电压与电流及功率关系

  U1/U2=n1/n2;I1/I2=n2/n2;P入=P出

  5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损=(P/U)2R;(P损:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;

  6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。

物理知识点总结9

  物理的理论结构充分地运用数学作为自己的工作语言,以实验作为检验理论正确性的唯一标准,它是当今最精密的一门自然科学学科。

  重力

  ⑴重力的概念:地面附近的物体,由于地球的吸引而受的力叫重力。重力的施力物体是:地球。

  1、物体受到的重力跟它的质量成正比。

  2、重力跟质量的比值是个定值,为9.8N/Kg。

  这个定值用g表示,g= 9.8N/Kg

  ⑵重力大小的计算公式G=mg 其中g=9.8N/kg 它表示质量为1kg 的物体所受的重力为9.8N。

  ⑶重力的方向:竖直向下 其应用是重垂线、水平仪分别检查墙是否竖直和 面是否水平。

  ⑷重力的作用点重心:

  重力在物体上的作用点叫重心。质地均匀外形规则物体的重心,在它的几何中心上。如均匀细棒的重心在它的中点,球的重心在球心。方形薄木板的重心在两条对角线的交点

  ☆假如失去重力将会出现的现象:(只要求写出两种生活中可能发生的)

  ① 抛出去的物体不会下落;② 水不会由高处向低处流③ 大气不会产生压强;

  牛顿第一定律

  1、伽利略斜面实验:

  ⑴三次实验小车都从斜面顶端(同一位置)滑下的目的是:保证小车开始沿着平面运动的速度相同。

  ⑵实验得出得结论:在同样条件下,平面越光滑,小车前进地距离越远。

  ⑶伽利略的推论是:在理想情况下,如果表面绝对光滑,物体将以恒定不变的速度永远运动下去。

  ⑷伽科略斜面实验的卓越之处不是实验本身,而是实验所使用的独特方法在实验的基础上,进行理想化推理。(也称作理想化实验)它标志着物理学的真正开端。

  2、牛顿第一定律:

  ⑴牛顿总结了伽利略等人的研究成果,得出了牛顿第一定律,其内容是:一切物体在没有受到力的作用的时候,总保持静止状态或匀速直线运动状态。

  ⑵说明:A、牛顿第一定律是在大量经验事实的基础上,通过进一步推理而概括 出来的,且经受住了实践的检验 所以已成为大家公认的力学基本定律之一。但是 我们周围不受力是不可能的,因此不可能用实验来直接证明牛顿第一定律。

  B、牛顿第一定律的内涵:物体不受力,原来静止的物体将保持静止状态,原来运动的物体,不管原来做什么运动,物体都将做匀速直线运动. 指一个物体只能处于一种状态,到底处于哪种状态,由原来的状态决定,原来静止就保持静止,原来运动就保持匀速直线运动状态

  C、牛顿第一定律告诉我们:物体做匀速直线运动可以不需要力,即力与运动状态无关,所以力不是维持物体运动的原因,而是改变物体运动状态的原因。物体的运动不需力来维持。

  3、惯性:

  ⑴定义:物体保持运动状态不变的性质叫惯性。

  ⑵说明:惯性是物体的一种属性。一切物体在任何情况下都有惯性,惯性大小只与物体的质量有关,与物体是否受力、受力大小、是否运动、运动速度等皆无关。

  4、惯性与惯性定律的区别:

  A、惯性是物体本身的一种属性,而惯性定律是物体不受力时遵循的运动规律。

  B、任何物体在任何情况下都有惯性.

  ☆人们有时要利用

  用惯性,有时要防止惯性带来的危害,请就以上两点各举两例(不要求解释)。答:利用:跳远运动员的助跑;用力可以将石头甩出很远;骑自行车蹬几下后可以让它滑行。防止:小型客车前排乘客要系安全带;车辆行使要保持距离;包装玻璃制品要垫上很厚的泡沫塑料。

  对惯性的理解需注意的地方:

  ①一切物体包括受力或不受力、运动或静止的所有固体、液体气体。

  ②惯性是物体本身所固有的一种属性,不是一种力,

  所以说物体受到惯性或物体受到惯性力等,都是错误的。

  ③要把牛顿第一定律和物体的惯性区别开来,

  前者揭示了物体不受外力时遵循的运动规律,后者表明的是物体的属性。

  ④惯性有有利的一面,也有有害的一面,我们有时要利用惯性,有时要防止惯性带来的危害,但并不是产生惯性或消灭惯性。

  ⑤同一个物体不论是静止还是运动、运动快还是运动慢,不论受力还是不受力,都具有惯性,而且惯性大小是不变的。惯性只与物体的质量有关,质量大的物体惯性大,而与物体的'运动状态无关。

  (3)在解释一些常见的惯性现象时,可以按以下来分析作答:

  ①确定研究对象。

  ②弄清研究对象原来处于什么样的运动状态。

  ③发生了什么样的情况变化。

  ④由于惯性研究对象保持原来的运动状态于是出现了什么现象。

  压强

  一、压强

  1.压强:

  (1)压力:

  ①产生原因:由于物体相

  相互接触挤压而产生的力。

  ②压力是垂直作用在物体表面上的力。

  ③方向:垂直于接触面。

  ④压力与重力的关系:力的产生原因不一定是由于重力引起的,所以压力大小不一定等于重力。只有当物体放置于水平地面上时压力才等于重力。

  (2)压强是表示压力作用效果的一个物理量,它的大小与压力大小和受力面积有关。

  (3)压强的定义:物体所受压力的大小与受力面积之比叫做压强。

  (4)公式:p=F/S。式中p表示压强,单位是帕斯卡;F表示压力,单位是牛顿;S表示受力面积,单位是平方米。

  (5)国际单位:帕斯卡,简称帕,符号是Pa。1Pa=lN/m2,其物理意义是:lm2的面积上受到的压力是1N。

  2.增大和减小压强的方法

  (1)增大压强的方法:①增大压力:②减小受力面积。

  (2)减小压强的方法:①减小压力:②增大受力面积。

  二、液体的压强

  1.液体压强产生的原因:由于重力的作用,并且液体具有流动性,因此发发生挤压而产生的。

  2.液体压强的特点

  (1)液体向各个方向都有压强。

  (2)同种液体中在同一深度处液体向各个方向的压强相等。

  (3)同种液体中,深度越深,液体压强越大。

  (4)在深度相同时,液体密度越大,液体压强越大。

  3.液体压强的大小

  (1)液体压强与液体密度和液体深度有关。

  (2)公式:p=ρgh。式中,

  p表示液体压强,单位帕斯卡(Pa);ρ表示液体密度,单位是千克每立方米(kg/m3);h表示液体深度,单位是米(m)。

  3.连通器——液体压强的实际应用

  (1)原理:连通器里的液体在不流动时,各容器中的液面高度总是相同的。

  (2)应用:水壶、锅炉水位计、水塔、船闹、下水道的弯管。世界上最大的人造连通器是三峡船闸。

  三、大气压强

  1.大气压产生的原因:由于重力的作用,并且空气具有流动性,因此发生挤压而产生的。

  2.马德堡半球实验证明了大气压强是存在的,并且大气压强很大。

  3.大气压的测量——托里拆利实验

  (1)实验方法:在长约1m、一端封闭的玻璃管里灌满水银,用于指将管口堵住,然后倒插在水银槽中。放开于指,管内水银面下降到一定高度时就不再下降,这时测出管内外水银面高度差约为76cm。

  (2)计算大气压的数值:p0=p水银=ρ水银gh=13.6×103kg/m3×9.8N/kg×0.76m=1.013×105Pa。

  所以,标准大气压的数值为:P0=1.013Xl05Pa=760mmHg。

  (3)以下操作对实验没有影响 ①玻璃管是否倾斜;②玻璃管的粗细;

  ③在不离开水银槽面的前提下玻璃管口距水银面的位置。

  (4)若实验中玻璃管内不慎漏有少量空气,液体高度减小,则测量值要比真实值偏小。

  (5)这个实验利用了等效替换的思想和方法。

  3.影响大气压的因素:高度、天气等。在海拔3000m以内,大约每升高10m,大气压减小100Pa。

  4.气压计——测定大气压的仪器。种类:水银气压计、金属盒气压计(又叫做无液气压计)。

  5.大气压的应用:抽水机等。一切抽吸液体的过程都是由于大气压强的作用。

  四、流体压强与流速的关系

  1.在气体和液体中,流速越大的位置压强越小。

  2.飞机的升力的产生:飞机的机翼通常都做成上面凸起、下面平直的形状。当飞机在机场跑道上滑行时,流过机翼上方的空气速度快、压强小,流过机翼下方的空气速度慢、压强大。机翼上下方所受的压力差形成向上的升力。

物理知识点总结10

  光的反射和折射1.光的直线传播

  (1)光在同一种均匀介质中沿直线传播.小孔成像,影的形成,日食和月食都是光直线传播的例证.(2)影是光被不透光的物体挡住所形成的暗区.影可分为本影和半影,在本影区域内完全看不到光源发出的光,在半影区域内只能看到光源的某部分发出的光.点光源只形成本影,非点光源一般会形成本影和半影.本影区域的大小与光源的面积有关,发光面越大,本影区越小.(3)日食和月食:人位于月球的本影内能看到日全食,位于月球的半影内能看到日偏食,位于月球本影的延伸区域(即“伪本影”)能看到日环食;当月球全部进入地球的本影区域时,人可看到月全食.月球部分进入地球的本影区域时,看到的是月偏食.2.光的反射现象---:光线入射到两种介质的界面上时,其中一部分光线在原介质中改变传播方向的现象.(1)光的反射定律:

  ①反射光线、入射光线和法线在同一平面内,反射光线和入射光线分居于法线两侧.②反射角等于入射角.

  (2)反射定律表明,对于每一条入射光线,反射光线是唯一的,在反射现象中光路是可逆的3.平面镜成像

  (1.)像的特点---------平面镜成的像是正立等大的虚像,像与物关于镜面为对称。(2.)光路图作法-----------根据平面镜成像的特点,在作光路图时,可以先画像,后补光路图。

  (3).充分利用光路可逆-------在平面镜的计算和作图中要充分利用光路可逆。(眼睛在某点A通过平面镜所能看到的范围和在A点放一个点光源,该电光源发出的光经平面镜反射后照亮的范围是完全相同的`。)

  4.光的折射--光由一种介质射入另一种介质时,在两种介质的界面上将发生光的传播方向改变的现象叫光的折射.

  (2)光的折射定律---①折射光线,入射光线和法线在同一平面内,折射光线和入射光线分居于法线两侧.

  ②入射角的正弦跟折射角的正弦成正比,即sini/sinr=常数.(3)在折射现象中,光路是可逆的

  5.折射率---光从真空射入某种介质时,入射角的正弦与折射角的正弦之比,叫做这种介质的折射率,折射率用n表示,即n=sini/sinr.

  爱心专心恒心用心戴氏教育集团高三物理

  某种介质的折射率,等于光在真空中的传播速度c跟光在这种介质中的传播速度v之比,即n=c/v,因c>v,所以任何介质的折射率n都大于1.两种介质相比较,n较大的介质称为光密介质,n较小的介质称为光疏介质.6.全反射和临界角

  (1)全反射:光从光密介质射入光疏介质,或光从介质射入真空(或空气)时,当入射角增大到某一角度,使折射角达到90°时,折射光线完全消失,只剩下反射光线,这种现象叫做全反射.(2)全反射的条件

  ①光从光密介质射入光疏介质,或光从介质射入真空(或空气).②入射角大于或等于临界角

  (3)临界角:折射角等于90°时的入射角叫临界角,用C表示sinC=1/n7.光的色散:白光通过三棱镜后,出射光束变为红、橙、黄、绿、蓝、靛、紫七种色光的光束,这种现象叫做光的色散.

  (1)同一种介质对红光折射率小,对紫光折射率大.(2)在同一种介质中,红光的速度最大,紫光的速度最小.

  (3)由同一种介质射向空气时,红光发生全反射的临界角大,紫光发生全反射的临界角小.

  光学中的一个现象一串结论

  色散现象

  n红小黄紫大

  vλ(波动性)衍射C临

  干涉间距

  结论:(1)折射率n、;

  (2)全反射的临界角C;

  (3)同一介质中的传播速率v;(4)在平行玻璃块的侧移△x

  (5)光的频率γ,频率大,粒子性明显.;

  (6)光子的能量E=hγ则光子的能量越大。越容易产生光电效应现象

  (7)在真空中光的波长λ,波长大波动性显著;

  (8)在相同的情况下,双缝干涉条纹间距x越来越窄(9)在相同的情况下,衍射现象越来越不明显

  全反射的条件:光密到光疏;入射角等于或大于临界角

  全反射现象:让一束光沿半圆形玻璃砖的半径射到直边上,可以看到一部分光线从玻璃直边上折射到空气中,一部分光线反射回玻璃砖内.逐渐增大光的入射角,将会看到折射光线远离法线,且越来越弱.反射光越来越强,当入射角增大到某一角度C临时,折射角达到900,即是折射光线完全消失,只剩下反射回玻璃中的光线.这种现象叫全反射现象.折射角变为900时的入射角叫临界角

物理知识点总结11

  一、测量

  ⒈长度L:主单位:米;测量工具:刻度尺;测量时要估读到最小刻度的下一位;光年的单位是长度单位。

  ⒉时间t:主单位:秒;测量工具:钟表;实验室中用停表。1时=3600秒,1秒=1000毫秒。

  ⒊质量m:物体中所含物质的多少叫质量。主单位:千克; 测量工具:秤;实验室用托盘天平。

  二、机械运动

  ⒈机械运动:物体位置发生变化的运动。

  参照物:判断一个物体运动必须选取另一个物体作标准,这个被选作标准的物体叫参照物。

  ⒉匀速直线运动:

  ①比较运动快慢的两种方法:a 比较在相等时间里通过的路程。b 比较通过相等路程所需的时间。

  ②公式: 1米/秒=3.6千米/时。

  三、力

  ⒈力F:力是物体对物体的作用。物体间力的作用总是相互的。

  力的单位:牛顿(N)。测量力的仪器:测力器;实验室使用弹簧秤。

  力的作用效果:使物体发生形变或使物体的运动状态发生改变。

  物体运动状态改变是指物体的速度大小或运动方向改变。

  ⒉力的三要素:力的大小、方向、作用点叫做力的三要素。

  力的图示,要作标度;力的示意图,不作标度。

  ⒊重力G:由于地球吸引而使物体受到的力。方向:竖直向下。

  重力和质量关系:G=mg m=G/g

  g=9.8牛/千克。读法:9.8牛每千克,表示质量为1千克物体所受重力为9.8牛。

  重心:重力的作用点叫做物体的重心。规则物体的重心在物体的几何中心。

  ⒋二力平衡条件:作用在同一物体;两力大小相等,方向相反;作用在一直线上。

  物体在二力平衡下,可以静止,也可以作匀速直线运动。

  物体的平衡状态是指物体处于静止或匀速直线运动状态。处于平衡状态的物体所受外力的合力为零。

  ⒌同一直线二力合成:方向相同:合力F=F1+F2 ;合力方向与F1、F2方向相同;

  方向相反:合力F=F1-F2,合力方向与大的力方向相同。

  ⒍相同条件下,滚动摩擦力比滑动摩擦力小得多。

  滑动摩擦力与正压力,接触面材料性质和粗糙程度有关。【滑动摩擦、滚动摩擦、静摩擦】

  7.牛顿第一定律也称为惯性定律其内容是:一切物体在不受外力作用时,总保持静止或匀速直线运动状态。 惯性:物体具有保持原来的静止或匀速直线运动状态的性质叫做惯性。

  四、密度

  ⒈密度ρ:某种物质单位体积的质量,密度是物质的一种特性。

  公式: m=ρV 国际单位:千克/米3 ,常用单位:克/厘米3,关系:1克/厘米3=1×103千克/米3;ρ水=1×103千克/米3;

  读法:103千克每立方米,表示1立方米水的质量为103千克。

  ⒉密度测定:用托盘天平测质量,量筒测固体或液体的体积。

  面积单位换算:

  1厘米2=1×10-4米2,1毫米2=1×10-6米2。

  五、压强

  ⒈压强P:物体单位面积上受到的压力叫做压强。

  压力F:垂直作用在物体表面上的力,单位:牛(N)。

  压力产生的效果用压强大小表示,跟压力大小、受力面积大小有关。

  压强单位:牛/米2;专门名称:帕斯卡(Pa)

  公式: F=PS 【S:受力面积,两物体接触的公共部分;单位:米2。】

  改变压强大小方法:①减小压力或增大受力面积,可以减小压强;②增大压力或减小受力面积,可以增大压强。

  ⒉液体内部压强:【测量液体内部压强:使用液体压强计(U型管压强计)。】

  产生原因:由于液体有重力,对容器底产生压强;由于液体流动性,对器壁产生压强。

  规律:①同一深度处,各个方向上压强大小相等②深度越大,压强也越大③不同液体同一深度处,液体密度大的,压强也大。 [深度h,液面到液体某点的竖直高度。]

  公式:P=ρgh h:单位:米; ρ:千克/米3; g=9.8牛/千克。

  ⒊大气压强:大气受到重力作用产生压强,证明大气压存在且很大的是马德堡半球实验,测定大气压强数值的是托里拆利(意大利科学家)。托里拆利管倾斜后,水银柱高度不变,长度变长。

  1个标准大气压=76厘米水银柱高=1.01×105帕=10.336米水柱高

  测定大气压的仪器:气压计(水银气压计、盒式气压计)。

  大气压强随高度变化规律:海拔越高,气压越小,即随高度增加而减小,沸点也降低。

  六、浮力

  1.浮力及产生原因:浸在液体(或气体)中的物体受到液体(或气体)对它向上托的力叫浮力。方向:竖直向上;原因:液体对物体的上、下压力差。

  2.阿基米德原理:浸在液体里的物体受到向上的浮力,浮力大小等于物体排开液体所受重力。

  即F浮=G液排=ρ液gV排。 (V排表示物体排开液体的体积)

  3.浮力计算公式:F浮=G-T=ρ液gV排=F上、下压力差

  4.当物体漂浮时:F浮=G物 且 ρ物<ρ液 当物体悬浮时:F浮=G物 且 ρ物=ρ液

  当物体上浮时:F浮>G物 且 ρ物<ρ液 当物体下沉时:F浮ρ液

  七、简单机械

  ⒈杠杆平衡条件:F1l1=F2l2。力臂:从支点到力的作用线的垂直距离

  通过调节杠杆两端螺母使杠杆处于水位置的目的:便于直接测定动力臂和阻力臂的长度。

  定滑轮:相当于等臂杠杆,不能省力,但能改变用力的方向。

  动滑轮:相当于动力臂是阻力臂2倍的杠杆,能省一半力,但不能改变用力方向。

  ⒉功:两个必要因素:①作用在物体上的力;②物体在力方向上通过距离。W=FS 功的单位:焦耳

  3.功率:物体在单位时间里所做的功。表示物体做功的快慢的物理量,即功率大的物体做功快。

  W=Pt P的单位:瓦特; W的单位:焦耳; t的单位:秒。

  八、光

  ⒈光的直线传播:光在同一种均匀介质中是沿直线传播的。小孔成像、影子、光斑是光的直线传播现象。

  光在真空中的速度为3×108米/秒=3×105千米/秒

  ⒉光的反射定律:一面二侧三等大。【入射光线和法线间的夹角是入射角。反射光线和法线间夹角是反射角。】

  平面镜成像特点:虚像,等大,等距离,与镜面对称。物体在水中倒影是虚像属光的反射现象。

  ⒊光的折射现象和规律: 看到水中筷子、鱼的虚像是光的折射现象。

  凸透镜对光有会聚光线作用,凹透镜对光有发散光线作用。 光的折射定律:一面二侧三随大四空大。

  ⒋凸透镜成像规律:[U=f时不成像 U=2f时 V=2f成倒立等大的实像]

  物距u 像距v 像的性质 光路图 应用

  u>2f ff2f 倒放大实 幻灯机

  u⒌凸透镜成像实验:将蜡烛、凸透镜、光屏依次放在光具座上,使烛焰中心、凸透镜中心、光屏中心在同一个高度上。

  九、热学:

  ⒈温度t:表示物体的冷热程度。【是一个状态量。】

  常用温度计原理:根据液体热胀冷缩性质。

  温度计与体温计的不同点:①量程,②最小刻度,③玻璃泡、弯曲细管,④使用方法。

  ⒉热传递条件:有温度差。热量:在热传递过程中,物体吸收或放出热的多少。【是过程量】

  热传递的方式:传导(热沿着物体传递)、对流(靠液体或气体的流动实现热传递)和辐射(高温物体直接向外发射出热)三种。

  ⒊汽化:物质从液态变成气态的现象。方式:蒸发和沸腾,汽化要吸热。

  影响蒸发快慢因素:①液体温度,②液体表面积,③液体表面空气流动。蒸发有致冷作用。

  ⒋比热容C:单位质量的某种物质,温度升高1℃时吸收的热量,叫做这种物质的比热容。

  比热容是物质的特性之一,单位:焦/(千克℃) 常见物质中水的比热容。

  C水=4.2×103焦/(千克℃) 读法:4.2×103焦耳每千克摄氏度。

  物理含义:表示质量为1千克水温度升高1℃吸收热量为4.2×103焦。

  ⒌热量计算:Q放=cm⊿t降 Q吸=cm⊿t升

  Q与c、m、⊿t成正比,c、m、⊿t之间成反比。⊿t=Q/cm

  6.内能:物体内所有分子的动能和分子势能的总和。一切物体都有内能。内能单位:焦耳

  物体的内能与物体的温度有关。物体温度升高,内能增大;温度降低内能减小。

  改变物体内能的方法:做功和热传递(对改变物体内能是等效的)

  7.能的转化和守恒定律:能量即不会凭空产生,也不会凭空消失,它只会从一种形式转化为其它形式,或者从一个物体转移到另一个物体,而能的总量保持不变。

  物理的`基本方法有哪些

  上课专心听讲

  上课要认真听讲,不要以为老师讲得简单而放弃听讲,如果真出现这种情况可以当成是复习、巩固。尽量与老师保持一致、同步,不同看法下课后再找老师讨论。做好笔记为辅,好的解题方法,好的例题,听不太懂的地方等等都要记下来。课后还要整理笔记,一方面是为了“消化好”,另一方面还要对笔记作好补充。

  自觉独立复习

  要独立地(指不依赖他人),保质保量地做一些题。题目要有一定的数量,更要有一定的质量,就是说要有一定的难度。此外学习资料要保存好,作好分类工作,还要作好记号。学习资料的分类包括练习题、试卷、实验报告等等。要想对于物理的过程中,要清楚的,不管是理论,还是实践,我们都要先把图画出来,还有在学习的时候,我们都要专心的听讲,在上课的时候不走神,还有不要自以为是,要不断的学习,向老师和同学问一下,还有这样的话我们要多练习,这样的话就能好好的把物理学下去,在学习的时候多练习。

  重视知识应用

  家里突然停电了,你还会像小时候那么害怕吗?八成是保险丝烧掉了,快去看看。百米赛跑时,为何要求计时员看到枪冒烟开始计时,而不是听到枪声计时?你学了光速比声速大很多,计算一下,就明白了。为什么汽车刹车后还要行驶一段距离?在雨雪天气路滑时,如何减小交通事故的发生?这与惯性、摩擦有关。如何判断戒指是否纯金?测量质量与体积,计算密度,查密度表对比吧!随着物理学习的深入,你会豁然明朗,生活到处是物理谜语,等待你去解开。

  答题有技巧

  在考试的时候,先拣会做的做,这样你就有一部分分稳稳的握在手里了,你的心态也会不一样了心理就有底了。拿到物理知识卷子先用三分钟时间大概扫一下,整套卷子的难度分布大概确认一下答题策略,先做会做的,在做可能会作的,最后作不会做的,不会做的尽量写。

  怎样夯实物理学科基础?

  首先是翻课本,把公式都列在一张纸上。但在在摘录之前,肯定是要理解那个公式的,比如各个符号代表的意思,通常使用的单位,还有整个公式表示的意思。只有理解了这个公式,才能把它用起来。

  列完公式之后,当然就是要把它记下来,背诵下来。但其实当你理解的时候,就已经把公式背下来了。接下来就是要好好锻炼这些基础公式运用的熟练程度。基础不好的同学,有可能是没有把握好一轮复习这个时机去掌握基础。那么一轮复习的时候,那些一轮资料,也有可能是没有好好完成的。可能错了好多没有去理解它,或者都没做。

  公式列出来,理解之后,就可以去找一些基础的题目来练习一下熟练度,特别是,一轮的复习资料,可以把它找出来,然后重新用一下。可以根据现在对公式的理解,然后去改正以前的那些错题,或者是再写一下自己之前没有做的那些题目,来提升自己对公式运用的熟练度。

  在自己感觉自己对公式的熟练度差不多的时候,可以试着去做一些大题,这是需要同学们,去综合运用各个公式的题目。这样子去理解各公式之间的关联。不过,到这种程度的话,就已经达到中上层的水平了!

  流程大致是:理解公式→摘录公式→记忆公式→做基础题训练熟练度→做大题锻炼综合能力。

  学好物理有哪七小步

  一、自学多质疑

  按照老师下发的单元教学计划,在指定的时间内进行自学,将自学中的疑难问题写在质疑小本上交给老师。初期为了帮助学生质疑,在课堂上专门安排提问题竞赛,促进思考。

  二、要独立做题

  要独立地(指不依赖他人),保质保量地做一些题。题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。任何人学习数理化不经过这一关是学不好的。独立解题,可能有时慢一些,有时要走弯路,有时甚至解不出来,但这些都是正常的,是任何一个初学者走向成功的必由之路。

  三、弄清物理过程

  要对物理过程一清二楚,物理过程弄不清必然存在解题的隐患。题目不论难易都要尽量画图,有的画草图就可以了,有的要画精确图,要动用圆规、三角板、量角器,以显示几何关系。画图能够变抽象思维为形象思维,更精确地掌握物理过程。有了图就能作状态分析和动态分析,状态分析是固定的、死的、间断的,而动态分析是活的、连续的。

  四、必备纠错本

  上课以听讲为主,还要有一个笔记本,有些东西要记下来高中生物。知识结构、的解题方法、的例题、不太懂的地方等等都要记下来。课后还要整理笔记,一方面是为了“消化好”,另一方面还要对笔记作好补充。笔记本不只是记上课老师讲的,还要作一些读书摘记,自己在作业中发现的好题、好的解法也要记在笔记本上,就是同学们常说的“好题本”。辛辛苦苦建立起来的笔记本要进行编号,以后要经学看,要能做到爱不释手,终生保存。

  五、保存好学习资料

  学习资料要保存好,既要作好分类工作,还要好记号。学习资料的分类包括练习题、试卷、实验报告等等。所谓作记号,比方说对习题而言,一般题不作记号,好题、有价值的题、易错的题,分别作不同的记号,以备今后阅读,作记号可以节省不少时间。

  六、练习做题

  针对分析解答各部分习题的关键,精选例题,用小组竞赛的方法,进行分析解决问题的思路方法和技巧的训练。

  七、懂得自我评价

  掌握自我评价的方法,善于在自己生活的集体中找到评价的参照物。如回答下面问题:①非智力因素(学习态度、兴趣、意志力、心理承受力、心理调节能力)如何?②知识掌握程度(了解、理解、还是掌握?自己属于哪一层?有何障碍?)如何?③能力(观察、思维动手能力)如何?

  快速提高物理成绩的“三多原则”

  多理解,就是紧紧抓住预习、听课和复习,对所学知识进行多层次、多角度地理解。预习可分为粗读和精读。先粗略看一下所要学的内容,对重要的部分以小标题的方式加以圈注。接着便仔细阅读圈注部分,进行深入理解,即精读。上课时可有目的地听老师讲解难点,解答疑问。这样便对知识理解得较全面、透彻。课后进行复习,除了对公式定理进行理解记忆,还要深入理解老师的讲课思路,理解解题的“中心思路”,即抓住例题的知识点对症下药,应用什么定理的公式,使其条理化、程序化。

  多练习,既指巩固知识的练习,也指心理素质的“练习”。巩固知识的练习不光是指要认真完成课内习题,还要完成一定量的课外练习。但单纯的“题海战术”是不可取的,应该有选择地做一些有代表性的题型。基础好的同学还应该做一些综合题和应用题。另外,平日应注意调整自己的心态,培养沉着、自信的心理素质。

  多总结,首先要对课堂知识进行详细分类和整理。特别是定理,要深入理解它的内涵、外延、推导、应用范围等,总结出各种知识点之间的联系,在头脑中形成知识网络。其次要对多种题型的解答方法进行分析和概括。还有一种总结也很重要,就是在平时的练习和考试之后分析自己的错误、弱项,以便日后克服。

物理知识点总结12

  电荷间的相互作用

  1.点电荷:当电荷本身的大小比起它到其他带电体的距离小得多,这样可以忽略电荷在带电体上的具体分布情况,把它抽象成一个几何点。这样的带电体就叫做点电荷。点电荷是一种理想化的物理模型。

  2.带电体看做点电荷的'条件:

  ①两带电体间的距离远大于它们大小;

  ②两个电荷均匀分布的绝缘小球。

  3.影响电荷间相互作用的因素:

  ①距离;

  ②电量;

  ③带电体的形状和大小

物理知识点总结13

  高二上学期物理知识点:静电场

  1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍。

  2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

  3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

  4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}

  5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

  6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

  7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

  8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

  9.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

  10.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}

  11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)

  12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

  13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

  14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

  15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m

  注:

  (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

  (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

  (3)常见电场的`电场线分布要求熟记〔见图[第二册P98];

  (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

  (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;

  (6)电容单位换算:1F=106μF=1012PF;

  (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;

  (8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。

  高二上学期物理知识点:恒定电流

  1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

  2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

  3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}

  4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外

  {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

  5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

  6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

  7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R

  8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

  9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+电流关系I总=I1=I2=I3I并=I1+I2+I3+电压关系U总=U1+U2+U3+U总=U1=U2=U3功率分配P总=P1+P2+P3+P总=P1+P2+P3+

  高二上学期物理知识点:磁场

  1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m

  2.安培力F=BIL;(注:L⊥B){B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

  3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

  4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

  (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

  (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

  注:

  (1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

  (2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册P144〕;(3)其它相关内容:地磁场/磁电式电表原理〔见第二册P150〕/回旋加速器〔见第二册P156〕/磁性材料=103mH=106μH。(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

  高二理科物理知识点:电场

  1.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

  2.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍

  3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

  4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}

  5.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

  6.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

  7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

  8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

  9.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)

  10.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

  11.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}

  12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

  13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

  14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

  15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m

物理知识点总结14

  (1)定义:地球上的物体具有跟它的高度有关的能量,叫做重力势能。

  ①重力势能是地球和物体组成的系统共有的,而不是物体单独具有的。②重力势能的大小和零势能面的选取有关。③重力势能是标量,但有"+“、”-"之分。

  (2)重力做功的特点:重力做功只决定于初、末位置间的高度差,与物体的`运动路径无关。WG=mgh.

  (3)做功跟重力势能改变的关系:重力做功等于重力势能增量的负值。即。

  3.探究决定动能大小的因素:

  ①猜想:动能大小与物体质量和速度有关。

  实验研究:研究对象:小钢球方法:控制变量。

  ·如何判断动能大小:看小钢球能推动木块做功的多少。

  ·如何控制速度不变:使钢球从同一高度滚下,则到达斜面底端时速度大小相同。

  ·如何改变钢球速度:使钢球从不同高度滚下。

  ③分析归纳:保持钢球质量不变时结论:运动物体质量相同时;速度越大动能越大。

  保持钢球速度不变时结论:运动物体速度相同时;质量越大动能越大;

  ④得出结论:物体动能与质量和速度有关;速度越大动能越大,质量越大动能也越大。

物理知识点总结15

  1、比热容的概念:

  单位质量的某种物质温度升高(或者降低)1℃吸收(或者放出)的热量叫做这种物质的比热容,简称比热。用符号c表示比热容。

  2、比热容的单位:

  在国际单位制中,比热容的单位是焦每千克摄氏度,符号是J/(kg·℃)。

  3、比热容的物理意义

  (1)比热容是通过比较单位质量的某种物质温度升高1℃时吸收的热量,用来表示各种物质的不同性质。

  (2)水的比热容是×103J/(kg·℃)。它的物理意义是:1千克水温度升高(或降低)1℃,吸收(或放出)的热量是×103J。

  4、比热容

  (1)比热容是物质的一种特性,各种物质都有自己的比热。

  (2)从比热表中还可以看出,各物质中,水的'比热容。这就意味着,在同样受热或冷却的情况下,水的温度变化要小些。水的这个特征对气候的影响,很大。在受太阳照射条件相同时,白天沿海地区比内陆地区温度升高的慢,夜晚沿海地区温度降低也少。所以一天之中,沿海地区温度变化小,内陆地区温度变化大。在一年之中,夏季内陆比沿海炎热,冬季内陆比沿海寒冷。

  (3)水比热容大的特点,在生产生活中也经常利用。如汽车发动机、发电机等机器,在工作时要发热,通常要用循环流动的水来冷却。冬季也常用热水取暖。

  5、说明

  (1)比热容是物质的特性之一,所以某种物质的比热不会因为物质吸收或放出热量的多少而改变,也不会因为质量的多少或温度变化的多少而改变。

  (2)同种物质在同一状态下,比热是一个不变的定值。

  (3)物质的状态改变了,比热容随之改变。如水变成冰。

  (4)不同物质的比热容一般不同。

  6、热量的计算:

  Q=cmΔt。式中,Δt叫做温度的变化量。它等于热传递过程中末温度与初温度之差。

  注意:

  ①物体温度升高到(或降低到)与温度升高了(或降低了)的意义是不相同的。比如:水温度从lO℃升高到30℃,温度的变化量是Δt==30℃-lO℃=2O℃,物体温度升高了20℃,温度的变化量Δt=20℃。

  ②热量Q不能理解为物体在末温度时的热量与初温度时的热量之差。因为计算物体在某一温度下所具有的热量是没有意义的。正确的理解是热量Q是末温度时的物体的内能与初温度时物体的内能之差。

【物理知识点总结】相关文章:

物理知识点总结05-28

物理知识点总结03-26

物理的知识点总结06-09

物理知识点总结04-25

物理知识点的总结07-19

物理知识点总结11-19

初中物理知识点总结06-08

中考物理知识点总结11-14

中考物理的知识点总结06-19

物理知识点总结【热】01-13