小学数学知识点总结[精品15篇]
总结是事后对某一阶段的学习或工作情况作加以回顾检查并分析评价的书面材料,它能使我们及时找出错误并改正,让我们来为自己写一份总结吧。那么你知道总结如何写吗?以下是小编精心整理的小学数学知识点总结,希望对大家有所帮助。
小学数学知识点总结1
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则:
1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数混合运算
1、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)分数乘法应用题——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
已知单位“1”的量,求单位“1”的量的'几分之几是多少,用单位“1”的量与分数相乘。
2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
3、求比一个数多(或少)几分之几的数是多少的解题方法
(1)单位“1”的量+(-)单位“1”的量×这个数量比单位“1”的量多(或少)的几分之几=这个数量;
(2)单位“1”的量×[1+这个数量比单位“1”的量多(或少)的几分之几]=这个数量。
小学数学知识点总结2
认识计数单位“百”和“千”,知道相邻两个计数单位之间的十进关系。
掌握万以内的数位顺序,会读、写万以内的数。
知道万以内数的`组成。
会比较万以内数的大小,能用符号和词语描述万以内数的大小。
理解并认识万以内的近似数。
会口算百以内的两位数加、减两位数。
会口算整百、整千数加、减法。
会计算几百几十加、减几百几十,能结合实际进行估算。
知道除法的含义和除法各部分名称以及乘法与除法的关系。
熟练进行用乘法口诀求商。
会从生活中发现和提出数学问题,能用所学知识(两步计算)加以解决。
知道小括号的作用,会使用小括号。
会探索给定图形或数的排列中的简单规律。
有发现和欣赏数学美、运用数学去创造美的意识。
初步形成观察、分析和推理能力。
认识质量单位克和千克。
初步建立1克和1千克的质量观念,知道1千克=1000克。
建立质量观念,培养学生估算物体质量的意识。
今天就和大家就分享到这,祝各位同学学习愉快!
小学数学知识点总结3
通过欣赏和设计图案的活动,进一步认识正方形、长方形、三角形和圆。
小小运动会
1、应用100以内的`进位加法与退位减法的计算方法进行正确的计算。
2、经历与他人交流各自算法的过程,体会算法多样化。
3、体会长方形、正方形、三角形和圆在生活中的普遍存在。
4、能利用图形设计美丽的图案。
小学数学知识点总结4
第一章————除法
1、用乘法口诀做除法,余数一定要比除数小;
2、应用题中,除数和余数的单位不一样;
商的单位是问题的单位,余数的单位和被除数的单位相同;
3、解决生活问题,如提的问题是“至少需要几条船?”,用进一法(用商加1)”,乘船、坐车、坐板凳等,读懂题目再作答。
第二章————方向与位置(认识方向)
1、地图上的方向口诀:上北下南,左西右东;
辨认方向时要画方向标。
2、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;
“小猪在小马的()方”,“小马的()方是小猪”,是以小马家为中心点,画出方位坐标,确定方向。
3、太阳早上从东边升起,西边落下;
指南针一头指着(),一头指着()。小明早上面向太阳时,他的前面是(),后面是(),左面是(),右面是()
4、当吹东南风时,红旗往()飘;
吹西北风时,红旗往()飘。
第三章————生活中的大数(认识10000以内的数)
1、计数器上从右边数起第一位是()位,第二位是()位,第三位是()位,第四位是()位,千位的'左边是()位,右边是()位。
2、一个四位数最高位是()位,它的千位是5,个位是2,其他的数位是0,它是()。
3、在8536中,8在()位上,表示()。5在()位上,表示()。3在()位上,表示()。6在()位上,表示()。
4、由三个千,五个一组成的数是(),由9个一,两个百和一个千组成的数是()。
5、读数时,要从高读起,中间有一个或两个0,都只读一个0个“零”;
末尾不管有几个“0”,都不读;
写数,末尾不管有几个0,都不读。写数时,从高位写起,按照数位顺序表写,中间或末尾哪一位上没有数,就写“0”占位。
6、10个十是(),10个一百是(),10个一千是(),100个一百是()。10000里面有()个百,1000里面有()个十。
7、最大的三位数是(),最小的三位数是()。最大的四位数是(),最小的四位数是()。
8、比较大小时,先比较位数,位数多的数就大,位数少的数就小;
位数相同时,从最高位开始比较,最高位上的数字相同的,就比下一位,直到比出大小。从大到小用“>”,从小到大用“<”。
第四章————测量1、毫米(mm)、厘米(cm)、分米(dm)、米(m),相邻单位之间的进率是“10”;
2、1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米,1分米=100毫米,1000米=1千米;
3、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;
4、长度单位的加减法,米加米,分米加分米.......就是把相同的单位进行加减。
第五章————加与减1、口算整百加减整百时,想成几个百加减几个百,加减整十数的算理也相同。
2、计算时要注意:(1)、相同数位要对齐,从个位算起。(2)、计算加法时,哪一位相加满十,要向前一位“进一”。(3)、计算减法时,哪一位不够减时,要向前一位“借1”,但是不要忘记退位时要减1;
3、在估算中,如果估算到百位,就看十位数是多少,如果十位上的数大于5,则百位进1,十位和个位舍去,变为0,如估算678,就变为700;
如果十位上的数小于5,则百位不变,十位和个位舍去,变为0,如估算607,就变为600;
4、加数+加数=和一个加数=和-另一个加数如:()+156=368(用368-156计算)280+()=760(用760-280计算)
5、被减数-减数=差被减数=减数+差减数=被减数-差如:()-156=368(用156+368计算)
980-()=760(用980-760计算)
6、加法的验算方法:(1)交换加数的位置,看和是否相同,(2)用和减去其中一个加数,看是否等于另一个加数;
7、减法的验算方法:(1)用被减数减去差,看结果是否等于减数,(2)用减数加上差,看结果是否等于被减数。注意:运算时不要抄错数,也不要直接把验算结果抄上。
第六章————认识角1、每个角都是由1个顶点和2条边组成;
2、按角的大小,将角分为锐角、直角、钝角,所有的直角都相等,比直角小的是锐角,比直角大的是钝角。要知道一个角是什么角,可以用三角板上的直角比一比。
3、比较角的大小时要注意:角的大小与边的长短无关,与角的张口大小有关,张口越大角就越大;
4、正方形有四个直角,四条边都相等;
长方形有四条边,四个直角,长方形的对边相等;
5、平行四边形有四条边,有2个锐角,2个钝角,对边相等,对角相等。
第七章————时、分、秒1、钟面上有12个大格,每个大格里有5个小格,一共有60个小格;
2、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分钟;
3、分针走一小格是1分,走一大格是5分,走一圈是60分,也就是1小时;
4、时针走一大格是1小时,走一圈是12小时;
5、时、分、秒相邻单位的进率是60;
1时=60分1分=60秒6、比较时间,首先要观察,统一单位之后再比较大小。
7、时间的加减:分减分,时减时,当分不够减时,要向前一位借1,化成60,再相加减;
第八章————统计1、记录并学会计算,谁多,谁少。
小学数学知识点总结5
1、认钟表,时和分,先看时针几时过,再看分针数小格,几时几分合一起,快快说出时间来。
2、寻找图形的变化规律,可从形状、颜色、个数的'增减等方面去思考。
3、数列之间有规律,观察相邻数变化,通过计算找规律,后面数据很明了。
4、统计数据有方法,一个一个来点数,边数边来做记号,数出数量填图表。
5、两位数加减一位数、整十数,小朋友请注意,数字符号须看清,相同数位才加、减。
6、大面额的人民币换成小面额的人民币,用数得组成来思考,想打面额的人民币里面有几个小面额的人民币的数。
7、最小的两位数是10,地两位数是99。
8、一个两位数,位是十位,一个三位数,位是百位。
9、求一个加数,用和减另一个加数。求被减数,用差加减数。
10、两数比多少,求相差数用减法,求大数用加法,求小数用减法。
11、三数相加、减,凑十能简便,如果能凑十,先把它来算。两位数加一位数,先看清个位数,判断进位不进位,再确定十位数。
12、写数也从高位起,哪位是几就写几。除开位,哪位一个也没有,就写零来占占位。
13、两数比大小,先看位数来比较,位数多来数就大,位数相同从高位比。
14、数字宝宝真奇妙,位数不同意不同,几在十位是几十,几在个位是几个。
15、相近两数比多少,可用大数比小数多一些,小数比大数少一些来描述。
小学数学知识点总结6
1.认识人民币的单位元、角、分和它们的十进关系,认识各种面值的人民币,能看懂物品的单价,会进行简单的计算。
2.结合自己的生活经验和已经掌握的100以内数的.知识,学习、认识人民币,一方面初步知道人民币的基本知识和懂得如何使用人民币,提高社会实践能力;另一方面加深对100以内数的概念的理解。
3.体会数概念与现实生活的密切联系。
4.认识各种面值的人民币,并会进行简单的计算。
5.使学生认识人民币的单位元、角、分,知道1元=10角,1角=10分。
6.通过购物活动,使学生初步体会人民币在社会生活、商品交换中的功能和作用并知道爱护人民币。
小学数学知识点总结7
一、知识框架
一级知识点数与代数二级知识点数的运算三级知识点
1、列竖式计算除法。
2、两位数除以一位数;
除法的验算
3、一步计算的问题
4、两步计算的问题
1、质量单位千克、克数与代数常见的量
2、千克、克之间的换算,简单的实际问题
3、24时计时法空间与图形空间与图形统计与概率图形的认识
从三个方向观察用小正方体搭成的立体图形形状
1.周长的认识
2.长方形、正方形的周长计算描述事件发生的可能性。
二、期末知识点
第一单元除法(除法是乘法的逆运算)
两位数除以一位数(商是两位数)的除法。是在二年级(上册)表内除法和二年级(下册)有余数除法的基础上安排的。
1.计算:列竖式计算除法。
2.口算:被除数十位和个位上的数分别除以除数都没有余数的除法,包括整十数除以一位数商是整十数。
3.笔算:两位数除以一位数;除法的验算(用乘法验算)。
4.估算:估计两位数除以一位数的商是几十多。
5.一步计算的问题:在解决的实际问题中体会数量关系。总价÷单价=数量总价÷数量=单价
6.两步计算的问题:先求总和或剩余是多少,再平均分的实际问题。
练习:
(1)用竖式计算,并验算:62÷266÷672÷347÷7
(2)口算:36÷360÷268÷290÷3
(3)列竖式计算:39÷389÷467÷274÷3
(4)你能估算下面各题的商各是几十多吗?64÷584÷395÷481÷3
(5)王老师用72元买笔记本,如果每本单价是2元,那么能买多少本?李老师用60元买了20本笔记本,那么每本笔记本多少钱?
(6)一副乒乓球拍26元,一个乒乓球2元,用50元买一副乒乓球拍,剩下的钱能够买几个乒乓球?第二单元认数1.认数、读数、写数。
整千数:数位与顺序,认、读、写数,口算整千数的加、减法,解决实际问题。非整千数:认、读、写数,口算整千数加整百数及相应的减法,按顺序整理数。
练习:
(1)口算:201+4000800030006000201000+100
(2)写一写:两个千加两个百加一个十是多少?
(3)三千零二是由几个千和几个一组成?
(4)9670是()位数,它的最高位是()位,7在()位上,个位上是()。
2.大小比较
比较大小时的数学思考,比较大小的实际应用,非整千数最接近几千。
练习:
比较大小:3650和2520,7890和8790第三单元千克和克
千克和克都是质量单位,物体含有物质的多少是它的质量。我国人民在生活中习惯以“物体有多重”代替“质量是多少”,因此没有使用“质量”这个词,仍然讲“有多重”。
1.称一个物体有多重,一般用千克为单位。
2.净含量是指包装袋内物品实际有多重。
3.千克可以用KG表示,又叫公斤。
4.从秤上读出物品的重量。
5.称比较轻的物品,一般用克为单位。
6.认识天平。
7.千克和克之间的关系。1千克=1000克。
练习
(1)一袋盐重500克,两袋盐重()克?
(2)2千克=()克
(3)9000克=()千克第四单元加和减
1.口算两位数加、减。解决与“倍”或“差”有关的两步计算实际问题。
练习
口算:44+2532+5714+6876642.画线段图解决问题。
练习
手套的价格是12元,帽子的价格是手套的3倍,你能用线段画出来并算出帽子是多少钱吗?第五单元24时记时法。
1.24时记时法及它与普通记时法(12时记时法)的联系
2.联系实际问题求经过时间的基本思路与方法。包括:求整时到整时的经过时间,求非整点时刻间的经过时间。(利用线段图)。
求经过时间:
记忆:结束时刻开始时刻=经过时间到达的时刻出发的时刻=经过时间3.两种计时方式的转化。
普通记时法与24时记时法的互相转化普通记时法24时记时法凌晨1时1时
早晨5时5时上午8时8时中午12时12时下午1时13时下午2时14时晚上6时18时晚上7时19时晚上8时20时晚上9时21时
深夜12时24时(也是第二天的0时)
记忆:中午12时以后的时刻,用24时记时法表示,就用钟面上的时刻加上12时。中午12时以后的时刻,用普通记时法表示,就用时刻减去12时。
练习
(1)图书馆的的公告牌上面写着:借书时间:12:0013:30,15:4017:00。图书馆每天的借书时间是多长?
(2)用二十四小时计时法表示,:下午2:00,晚上9:00第六单元长方形和正方形
1.认识长方形和正方形。掌握长方形、正方形的边与角有什么特点。(长方形对边相等,四个角都是直角。正方形每条边都相等,四个角都是直角。通常把长方形的长边叫做长,短边叫做宽。把正方形的每一条边都叫做边长。)
2.探索、理解周长的含义及计算方法。计算长方形和正方形的周长。(物体某个面上一周边线的长度就是该物体某个面的'周长)。
练习
(1)篮球场长26米,宽14米,求篮球场的周长。
(2)操场长150米,宽70米,小强绕操场跑一周,小强一共跑了多少米?
第七单元乘法
1.三位数乘一位数的基本方法。(在二年级下册已经学习了两位数乘一位数)
2.三位数的中间或末尾是0时的乘法计算。3.连乘计算。练习:
(1)200×3152×4261×3224×5(2)124×3×2115×2×4
(3)一头牛一天吃20千克草,两头牛两天吃多少千克草?
第八单元观察物体
安排过一次“观察物体”,从物体(玩具、茶壶、汽车等)的前面、后面、左面、右面观察,并选择适宜的图形表示看到的物体的形状。本单元学习“观察物体”,从物体的正面、侧面和上面观察,并用视图表示看到的形状。
1.在知道物体的前面、后面、左面、右面的基础上,认识物体的正面、侧面和上面。
2.在不同的位置观察,看到的物体的面的个数往往是不相同的。
3.进行简单几何体与其三视图之间的转化。
第九单元统计与可能性
学习简单的统计知识。
练习
(1)在一个口袋里放3个红球,一个黄球,从袋子里任意摸一个球,摸到红球的可能性大还是摸到黄球的可能性大?
第十单元认识分数
理解分数的意义,认、读、写简单的分数,同分母分数(分母小于10)的加减计算。
1.分数的表示:分子、分母、分数线。
2.同分母分数比较大小。
3.同分母分数的加减。
小学数学知识点总结8
竖式除法
1、能正确掌握除法竖式的书写格式,掌握除法竖式的写法和每一步所表示的含义。
2、进一步体会除法的意义。
有余数的除法
1、体会有余数除法的意义。
2、积累正确的试商方法。
4、能用竖式正确计算有余数除法,了解余数一定要比除数小。
5、能运用有余数除法的知识解决一些简单的实际问题。
分苹果(竖式除法)
知识点:
1、掌握表内除法竖式的书写格式。
2、掌握除法竖式的写法和每一步所表示的含义。
分橘子(有余数的除法(一))
知识点:
1、体会有余数除法的意义。
2、会用竖式表示有余数的除法,了解余数一定要比除数小。
分草莓(有余数的除法(二))
知识点:
1、掌握正确的试商方法。利用乘法口诀,两数相乘的积最接近被除数,而又比被除数小。
2、能运用有余数除法的知识解决一些简单的实际问题。
租船(有余数除法的应用(一))
知识点:
灵活运用有余数的除法的有关知识解决生活中的简单实际问题。
派车(有余数除法的应用(二))
知识点:
灵活运用有余数除法及相关知识解决生活中的简单实际问题。
认识分米、毫米、千米
1、分米用字母dm表示,1分米写成1dm
2、毫米用字母mm表示,1毫米写成1mm
3、千米用字母km表示,1千米写成1km
米、分米、厘米、毫米、千米之间的换算
1、1厘米=10毫米或1cm=10mm
2、1分米=10厘米或1dm=10cm
3、1米=100厘米或1m=100cm
4、1米=10分米或1m=10dm
5、1千米=1000米或1km=1000m
感受1分米、1毫米、1千米间的实际长度
1、一张IC卡的厚度大约是1毫米
2、1扎的长度大约是1分米
3、公共汽车两站地间的距离大约是1千米
4、根据具体情境选择合适的长度单位
铅笔有多长(分米、毫米的认识)
知识点:
通过实际测量,了解米、分米、厘米、毫米之间的关系。
1分米=10厘米或1dm=10cm;
1米=10分米或1m=10dm;
1厘米=10毫米或1cm=10mm;
2、知道1分米或1毫米的实际长度。
3、能利用长度单位之间关系进行单位换算
1千米有多长(千米的认识)
知识点:
1、体验1千米有多长。
2、了解千米和米之间的关系;1千米=1000米或1km=1000m。
3、能正确使用长度单位。
认识角(角的初步认识)
知识点:
1、角是由一个顶点和两条直直的边组成的;
2、角的各部分名称、记法和读法;
3、能用角的符号(“∠”)表示角;
4、会比较角的大小。了解角的大小与两边张口的.大小有关,与边的长短无关;
5、能辨认直角、锐角和钝角。
长方形与正方形
知识点:
1、掌握长方形正方形的特征:长方形和正方形都有4条边,4个直角,长方形对边相等,正方形四条边都相等。
2、初步了解长方形、正方形之间的联系:正方形是特殊的长方形。
3、能在方格纸上画出长方形与正方形。
平行四边形
知识点:
1、直观认识平行四边形,知道平行四边形有四条边、四个角,对边相等。
2、初步了解长方形是特殊的平行四边形。
欣赏与设计
知识点:
1、进一步掌握已学过的图形,感受图形之美。
2、能用学过的图形在方格纸上设计图案,涂色时有一定规律性。
认识新的数计数单位
1、认识计数单位“千”“万”
2、万以内计数单位间的关系
3、万以内数位顺序表
万以内数的。读写
1、会读万以内的数
2、会写万以内的数
3、感受“满十进一”的十进制计数法
万以内数比较大小
1、会比较万以内数的大小
2、会用符号表示万以内数的大小
3、结合实际进行万以内数的估计。
数一数(认识新的计数单位)
知识点:
1、认识计数单位“千”“万”。
2、了解万以内计数单位间的关系:10个一是十;10个十是一百;10个一百是一千;10个一千是一万。
3、掌握万以内数的数位顺序。从右起第一位开始依次为个位,十位,百位,千位,万位。
4、结合具体情景,对“一千”和“一万”有具体的感受。
5、初步感受“满十进一”的十进制计数法。
拨一拨(万以内数的读写)
知识点:
1、会数数:一个一个地数;十个十个地数;一百一百地数等。
2、会读万以内的数:从高位起,依次读出每个数位上的数,末尾有零都不读,中间有一个或两个零只读一个零。
3、会写万以内的数:从高位起,依次写出每个数位上的数,哪位上一个单位也没有,就在那位上写零。
4、初步感受“满十进一”的十进制计数法。
比一比(万以内数比较大小)
知识点:
1、会比较万以内数的大小。方法:先比较数位的多少,数位多的数比较大,如果数位相同,先比最高位,最高位上的数相同,就比较下一位……
2、能够用符号表示万以内数的大小。
3、能结合实际进行万以内数的估计。
统计表
1、读懂信息
2、分析信息、预测信息
条形统计图
1、读懂
纵向:用直条的高矮表示(横向表示类别竖向表示数量)
横向:用直条的长短表示(竖向表示类别横向表示数量)
2、亲自经历收集数据
3、绘制条形统计图并做出分析
读统计图表(条形统计图)
知识点:
1、能读懂统计图表,从统计图表中获得信息。
2、认识条形统计图,体会条形统计图能直观地表示数量的多少。
3、能根据统计图表进行简单的分析。
讨论(统计图表)
知识点:
1、对统计图表中的数据作初步的分析和预测。
2、通过“泡豆芽”小实验记录的数据,能在方格纸上绘制统计图并作出分析。
辨认方向
1、给定一个方向,辨认其余的七个方向
2、用八个方向的词语描述物体所在的位置
认识路线
1、会使用八个方向认识简单的路线图。
2、路线图说出从出发地到目的地行走方向、距离和经过的地方。
辨认方向
知识点:
1、结合具体情境给定一个方向(东、南、西或北),能辨认其余的七个方向,并能用这些词语描述物体所在的位置。
2、能根据给定的一个方向,辨认地图中的其他七个方向。
认识路线
知识点:
1、学会使用八个方向认识简单的路线图。
2、能根据路线图说出从出发地到目的地行走的方向、距离和经过的地方。
小学数学知识点总结9
认识钟表:会认读整时、整时过一点或差一点到整时这三种时间。
首先认识时针、分针
时针:粗短;
分针:细长
认识整时技巧:分针指向12,时针指向几就是几时整。
分针指着12,时针指着1就是1时。1:00
分针指着12,时针指着2就是2时。2:00
分针指着12,时针指着6就是6时。6:00
分针指着12,时针指着8就是8时。8:00
分针指着12,时针指着12就是12时。12:00
注意:分针指在12附近,时针马上指着准确的数字,此时是“大约”几时整。
在练习拨针时,时针和分针一定要拨到准确的.位置上。
时针和分针并没有正对着钟面上的数,而是稍微偏了一点,像这种差一点不到几时,或是几时刚刚过一点,我们就不能说正好是几时,而应该说“大约是几时”。
注意:“大约是几时”拨针时应该掌握在前后5分以内。
小学数学知识点总结10
三年级数学年月日知识点
1. 认识年、月、日。认识平年和闰年。
2. 记忆大小月的方法
3. 一年分四个季度:1、2、3月第一季度;4、5、6月第一季度;7、8、9月第一季度;10、11、12月第一季度;
5. 普通记时法与24时记时法的转换。
6. 简单的经过时间的计算方法。 认识年、月、日 1. 1年有12个月。
2. 2.大月:有31天的月份是大月。大月有1月、3月、5月、7月、8月、10月、12月。
3. 小月:有30天的月份是大月。小月有4月、6月、9月、11月。
4.记忆大小月的方法:(1)拳头记忆法。(2)歌诀记忆法。(3)单、双数记忆法。
5.一年分四个季度:1、2、3月第一季度;4、5、6月第一季度;7、8、9月第一季度;10、11、12月第一季度;
平年和闰年
1.平年:2月有28天的月份是平年,平年有365天。
2.闰年:2月有29天的月份是平年,平年有365天。
3.平年和闰年的判断方法:一般情况下,公历年份除以4没有余数的是闰年,公历年份是整百数的,必须除以400没有余数才是闰年。
三年级数学24时计时法部分知识点
1、 会用24时计时法表示时刻;会把普通计时法和24时计时法进行互化。
如:普通计时法 24时计时法 :上午9时→9时 ;晚上9时→21时(9+12=21) 普通计时法一定要加上“上午”、“下午”等前缀。
2、【计算经过时间、开始时刻、结束时刻】 【认识时间与时刻的区别】
① 如:火车11:00出发,21:30到达,火车运行时间是(经过10小时30分钟),但这里不要写成(10:30)。 正确的列式格式为:21时30分-11时=10时30分,不能用电子表的形式相减。
② 再如:火车19时出发,第二天8时到达,火车运行时间是(13小时)。像这种跨越两天的,可以先计算第一天行驶了多长时间:24-19=5(时),再加上第二天行驶的8个小时:5+8=13(时);
③ 又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。
3. 会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。
三年级数学认识分米毫米千米知识点
1、分米用字母dm表示,1分米写成1dm
2、毫米用字母mm表示,1毫米写成1mm
3、千米用字母km表示,1千米写成1km
米、分米、厘米、毫米、千米之间的换算
1、1厘米=10毫米或1cm=10mm
2、1分米=10厘米或1dm=10cm
3、1米=100厘米或1m=100cm
4、1米=10分米或1m=10dm
5、1千米=1000米或1km=1000m
三年级数学吨的认识知识点
(1)了解"吨"是比"千克"大很多的质量单位,知道1吨大约有多重,了解质量单位"吨"在生活中的应用。
(2)掌握吨、千克、克之间的进率,能正确换算和计算,并能解决相关的实际问题。
(3)能估计一些常见物品的质量,能根据具体情境选择恰当的质量单位。
三年级数学千米和吨知识点
1.知道千米和吨的适用范围
2.千米和米之间的进率:1千米=1000米
3.吨和千克之间的进率:1吨=1000千克
认识千米 1.计量路程或测量公路、铁路、河流的.长度,通常用千米作单位,千米可以用字母“km”。千米又叫公里。
2.千米和米之间的进率:1千米=1000米
3.千米和米之间的换算方法:把千米换算成米,就是在千米末尾添上3个0;把米换算成千米,就是在米数末尾去掉3个0。
认识吨 1.称比较重的或大宗的物品,通常用吨作单位。吨可以用字母“t”表示。
2.吨和千克之间的进率:1吨=1000千克
3.吨和千克之间的换算方法:把吨换算成千克,就是在吨数末尾添上3个0;把千克换算成吨,就是在千克数末尾去掉3个0。
练习三 1.千米和米之间的进率:1千米=1000米
2.吨和千克之间的进率:1吨=1000千克
3.用千米和吨的知识解决实际问题
小学数学知识点总结11
一、圆的特征
1、圆是平面内封闭曲线围成的平面图形。
2、圆的特征:外形美观,易滚动。
3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。
圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。
直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r或r=d÷2
4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。
有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形
有四条对称轴的图形:正方形
有无条对称轴的图形:圆,圆环
6、画圆
(1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:
围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π=周长÷直径≈3.14
所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr
圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
4、半圆周长=圆周长一半+直径=πr+d
三、圆的面积s
1、圆面积公式的推导
如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。
圆的半径=长方形的宽
圆的周长的一半=长方形的'长
长方形面积=长×宽
所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)
S圆=πr×r=πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。
周长相同时,圆面积,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
4、环形面积=大圆–小圆=πR2-πr2
扇形面积=πr2×n÷360(n表示扇形圆心角的度数)
5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
一个圆的半径增加a厘米,周长就增加2πa厘米。
一个圆的直径增加b厘米,周长就增加πb厘米。
6、任意一个正方形的内切圆即圆的直径是正方形的边长,它们的面积比是4∶π。
7、常用数据
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
小学数学知识点总结12
一 年 级
(一)数与计算
(1)20以内数的认识。加法和减法。数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合式题。
(2)100以内数的认识。加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。两位数加、减整十数和两位数加、减一位数的口算。两步计算的加减式题。
二)量与计量钟面的认识(整时)。人民币的认识和简单计算。
三)几何初步知识。长方体、正方体、圆柱和球的直观认识。长方形、正方形、三角形和圆的直观认识。
(四)应用题。比较容易的加法、减法一步计算的应用题。
(五)实践活动。选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。
二年级
(一)数与计算
(1)两位数加、减两位数。两位数加、减两位数。加、减法竖式。两步计算的加减式题。
(2)表内乘法和表内除法。乘法的初步认识。乘法口诀。乘法竖式。除法的初步认识。用乘法口诀求商。除法竖式。有余数除法。两步计算的式题。
(3)万以内数的读法和写法。数数。百位、千位、万位。数的读法、写法和大小比较。
(4)加法和减法。加法,减法。连加法。加法验算,用加法验算减法。
(5)混合运算。先乘除后加减。两步计算式题。小括号。
(二)量与计量。时、分、秒的认识。米、分米、厘米的认识和简单计算。千克(公斤) 的认识
(三)几何初步知识。直线和线段的初步认识。角的初步认识。直角。
(四)应用题。加法和减法一步计算的应用题。乘法和除法一步计算的应用题。比较容易的两步计算的应用题。
(五)实践活动。与生活密切联系的内容。例如调查家中本周各项消费的开支情况,想到哪些数学问题。
三 年 级
(一)数与计算
(1)一位数的乘、除法。一个乘数是一位数的乘法(另一个乘数一般不超过三位数)。0的乘法。连乘。除数是一位数的除法。0除以一个数。用乘法验算除法。连除。
(2)两位数的乘、除法。一个乘数是两位数的乘法(另一个乘数一般不超过三位数)。乘数末尾有0的简便算法。乘法验算。除数是两位数的除法。连乘、连除的简便算法。
(3)四则混合运算。两步计算的式题。小括号的使用。
(4)分数的初步认识。分数的初步认识,读法和写法。看图比较分数的大小。简单的同分母分数加、减法。 (二)量与计量。千米(公里)、毫米的认识和简单计算。吨、克的认识和简单计算。面积单位。
(三)几何初步知识。长方形和正方形的特征。长方形和正方形的周长。平行四边形的直观认识。面积的含义。长方形、正方形的面积。
(四)应用题。常见的数量关系。解答两步计算的应用题。
(五)实践活动。联系周围接触到的事物组织活动。例如记录10天内的天气情况,分类整理,并作简单分析。
四 年 级
(一)数与计算
(1)亿以内数的读法和写法。计数单位“十万”、“百万”、“千万”。相邻计数单位间的十进关系。亿以内数的读法和写法。数的大小比较。以万作单位的近似数。
(2)加法和减法。接近整十、整百数的加、减法的简便算法。加、减法算式中各部分之间的关系。求未知数x。
(3)乘法和除法。积的变化。商不变的性质。被除数和除数末尾有0的简便算法。乘数接近整十、整百的简便算法。乘、除法算式中各部分之间的关系,求未知数x。
(4)大数目估算。算盘或计算器的介绍。[注①:例如:估计一个剧场有多少坐位,一块地有多少禾苗。②:小数如果分段教学,可以把小数的初步认识安排在前面的适当年级。]
(5)四则混合运算。中括号。三步计算的式题。
(6)整数及其四则运算的关系和运算定律。自然数与整数。十进制计数法。读法和写法。四则运算的意义。加法与减法、乘法与除法之间的关系。整除和有余数的除法。运算定律。简便运算。
(7)小数的意义、性质,加法和减法。小数的意义、性质。小数大小的比较。小数点移位引起小数大小的变化。小数的近似值。加法和减法。加法运算定律推广到小数。
(二)量与计量。年、月、日。平年、闰年。世纪。24时计时法。角的度量。面积单位。
(三)几何初步知识。直线的测定。测量距离(工具测、步测、目测)。射线。直角、锐角、钝角、平角、_周角。垂线。画垂线。平行线。画平行线。[注:标有“_”的内容为选学内容(下同)。这些内容不作为共同要求,也不作为考试内容。]三角形的特征。三角形的内角和。
(四)统计初步知识。简单数据整理。简单统计图表的初步认识。平均数的意义。
求简单的平均数。 (五)应用题。解答两步计算的应用题。解答比较容易的三步计算的应用题。 (六)实践活动。联系周围接触到的事物组织活动。例如假期里,学生小组组织一次考察活动,根据预算,每人需交纳活动费多少元。
五 年 级
(一)数与计算
(1)数的整除。能被2、5、3整除的数的特征。奇数和偶数。质数和合数。100以内质数表。分解质因数。约数和倍数。公约数和公倍数。求最大公约数。求最小公倍数。
(2)小数的乘法和除法。乘法和除法。积和商的`近似值。循环小数。乘法运算定律推广到小数。小数四则混合运算(不超过三步)。
(3)用计算器进行大数目的计算或探索有关规律。
(4)分数的意义和性质。分数的意义。分数单位。分数大小的比较。分数与除法的关系。真分数和假分数。带分数。分数的基本性质。约分。通分。分数和小数的互化。
(5)分数的加法和减法。分数加、减法的意义。分数加、减法运算(不含带分数)。加法的运算定律推广到分数。分数、小数加、减混合运算。
(二)代数初步知识。用字母表示数。简易方程(ax±b=c,ax±bx=c)。列方程解应用题。 (三)量与计量。体积单位。单名数和复名数(计算面积或体积一般不使用复名数)。
(四)几何初步知识。平行四边形和梯形的特征。平行四边形、三角形和梯形的面积。_组合图形。长方体和正方体的特征。长方体和正方体的表面积。体积的含义,长方体和正方体的体积。
(五)统计初步知识。数据的收集和分类整理。简单的统计表。根据收集的数据求平均数。 (六)应用题。相遇问题。解答三步计算的应用题。
(七)实践活动。联系学生所接触到的社会情况组织活动,例如调查某月10家住户水、电、燃气费和房租分别交纳的钱数或10家农户各种农作物的年产量,提出一些数学问题。
六 年 级
(一)数与计算
(1)分数的乘法和除法。分数乘法的意义。分数乘法。乘法的运算定律推广到分数。倒数。分数除法的意义。分数除法。
(2)分数四则混合运算。分数四则混合运算。
(3)百分数。百分数的意义和写法。百分数和分数、小数的互化。
(二)比和比例。比的意义和性质。比例的意义和基本性质。解比例。成正比例的量和成反比例的量。
(三)几何初步知识。圆的认识。圆周率。画圆。圆的周长和面积。_扇形的认识。轴对称图形的初步认识。圆柱的认识。圆柱的表面积和体积。圆锥的认识。圆锥的体积。_球和球的半径、直径的初步认识。 (四)统计初步知识。统计表。条形统计图,折线统计图,_扇形统计图。
(五)应用题。分数四则应用题(包括工程问题)。百分数的实际应用(包括发芽率、合格率、利率、税率等的计算)。比例尺。按比例分配。
(六)实践活动。联系学生所接触到的社会情况组织活动。例如就家中的卧室 ,画一个平面图。
(七)整理和复习。
小升初数学知识点
数与代数
(一)数的认识
整数【正数、0、负数】
一、一个物体也没有,用0表示。0和1、2、3……都是自然数。自然数是整数。
二、最小的一位数是1,最小的自然数是0。
三、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。“+4”读作正四。“-4”读作负四。 +4也可以写成4。
四、像 +4、19、+8844这样的数都是正数。像-4、-11、-7、-155这样的数都是负数。
五、0既不是正数,也不是负数。正数都大于0,负数都小于0。
六、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
七、通常情况下,盈利用正数表示,亏损用负数表示。
八、通常情况下,上车人数用正数表示,下车人数用负数表示。
九、通常情况下,收入用正数表示,支出用负数表示。
十、通常情况下,上升用正数表示,下降用负数表示。
小数【有限小数、无限小数】
一、分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。
三、每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。
四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
八、求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。
九、整数和小数的数位顺序表:
分数【真分数、假分数】
一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。
二、两个数相除,它们的商可以用分数表示。即:a÷b=b/a(b≠0)
三、小数和分数的意义可以看出,小数实际上就是分母是10、100、1000…的分数。
四、分数可以分为真分数和假分数。
五、分子小于分母的分数叫做真分数。真分数小于1。
六、分子大于或等于分母的分数叫做假分数。假分数大于或等于1。
七、分子和分母只有公因数1的分数叫做最简分数。
八、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
九、小数的性质和分数的基本性质一致的,应用分数的基本性质,可以通分和约分。
(马上点标题下“小升初”关注可获取更多教育经验、方法、学习资料,每天更新哟!)
百分数【税率、利息、折扣、成数】
一、表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或百分比,百分数通常用“%”表示。
二、分数与百分数比较:
三、分数、小数、百分数的互化。
(1)把分数化成小数,用分数的分子除以分母。
(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。
(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。
(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。
(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。
(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
四、熟记常用三数的互化。
五、
1、出勤率表示出勤人数占总人数的百分之几。
2、合格率表示合格件数占总件数的百分之几。
3、成活率表示成活棵数占总棵数的百分之几。
六、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。
七、1、多的÷“1”=多百分之几 2、少的÷“1”= 少百分之几
八、应得利息是税前利息,实得利息是税后利息。
九、利息 = 本金 × 利率 × 时间
十、应得利息 -利息税 = 实得利息
十一、几折表示十分之几,表示百分之几十;几几折表示十分之几点几,表示百分之几十几。
十二、
1、原价×折扣=现价
2、现价÷原价=折扣
3、现价÷折扣=原价
十三、几成表示十分之几表示百分之几十;几成几表示十分之几点几,表示百分之几十几。
因数与倍数【素数、合数、奇数、偶数】
一、4 × 3 = 12,12是4的倍数,12也是3的倍数,4和3都是12的因数。
二、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
三、一个数最小的因数是1,最大的因数是它本身。一个数因数的个数是有限的。
四、5的倍数:个位上的数是5或0。
2的倍数:个位上的数是2、4、6、8或0.2的倍数都是双数。
3的倍数:各位上数的和一定是3的倍数。
五、是2的倍数的数叫做偶数。不是2的倍数的数叫做奇数。
六、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数)。
七、一个数,如果除了1和它本身还有别的因数,这样的数就叫做合数。
八、在1—20这些数中: (1既不是素数,也不是合数)
奇数:1、3、5、7、9、11、13、15、17、19。
偶数:2、4、6、8、10、12、14、16、18、20。
素数:2、3、5、7、11、13、17、19。(共8个,和为77。)
合数:4、6、8、9、10、12、14、15、16、18、20。(共11个,和为132。)
九、最小的奇数是1,最小的偶数是0,最小的素数是2,最小的合数是4。
十、如果两个数是倍数关系,则大数是最小公倍数,小数是最大公因数。
十一、如果两个数只有公因数1,则最大公因数是1,最小公倍数是它们的乘积。
小升初数学知识点汇总
一
等式、方程与代数
1.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
2.方程式:含有未知数的等式叫方程式。
3.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
4.代数:代数就是用字母代替数。
5.代数式:用字母表示的式子叫做代数式。
如:3x =ab+c
二
数量关系计算公式
单价×数量=总价
单产量×数量=总产量
速度×时间=路程
工效×时间=工作总量
加数+加数=和
一个加数=和 - 另一个加数
被减数-减数=差
减数=被减数-差
被减数=减数+差
因数×因数=积
一个因数=积÷另一个因数
被除数÷除数=商
除数=被除数÷商
被除数=商×除数
三
表面积和体积
1.三角形的面积=底×高÷2。 公式 S= a×h÷2
2.正方形的面积=边长×边长 公式 S= a2
3.长方形的面积=长×宽 公式 S= a×b
4.平行四边形的面积=底×高 公式 S= a×h
5.梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
6.内角和:三角形的内角和=180度。
7.长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
8.正方体的表面积=棱长×棱长×6 公式: S=6a2
9.长方体的体积=长×宽×高 公式:V = abh
10.长方体(或正方体)的体积=底面积×高 公式:V = abh
11.正方体的体积=棱长×棱长×棱长 公式:V = a3
12.圆的周长=直径×π 公式:L=πd=2πr
13.圆的面积=半径×半径×π 公式:S=πr2
14.圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
15.圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
16.圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
17.圆锥的体积=1/3底面×积高。公式:V=1/3Sh
四
常用单位换算
1.长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
2.面积单位换算
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
3.体(容)积单位换算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升
4.重量单位换算
1吨=1000 千克 1千克=1000克 1千克=1公斤
人民币单位换算
1元=10角 1角=10分 1元=100分
5.时间单位换算
1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒
五
奥数常用公式
1.平均数:总数÷总份数=平均数
2.和差问题:(和+差)÷2=大数 (和-差)÷2=小数
3.和倍问题:和÷(倍数-1)=小数
小数×倍数=大数 (或者 和-小数=大数)
4.差倍问题:差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
5.相遇问题
相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间
6.追及问题
追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间
7.流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
8.浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
9.利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
10、盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数
六
常用数据及规律
1.圆周率常取数据
3.14×1=3.14 3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.15×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26
2.常用特殊数的乘积
25×3=75 25×4=100 25×8=200 125×3=375 125×4=500 125×8=1000 625×16=10000 37×3=111
3.常用平方数
11?2;=121 12?2;=144 13?2;=169 14?2;=196 15?2;=225 16?2;=256 17?2;=289 18?2;=324 19?2;=361 10?2;=100 20?2;=400 30?2;=900 40?2;=1600 50?2;=2500 60?2;=3600 770?2;=4900 80?2;=6400 15?2;=225 25?2;=625 35?2;=1225 45?2;=20xx 55?2;=3025 65?2;=4225 75?2;=5625 85?2;=7225
4.关于常用分数与小数的互化
1/2=0.5 4=0.25 3/4=0.75 1/5=0.2 2/5=0.4 3/5=0.6 4/5=0.8 1/8=0.125 3/8=0.375 5/8=0.625 7/8=0.875 1/20=0.05 3/20=0.15 7/20=0.35 9/20=0.45 11/20=0.55 1/25=0.04 2/25=0.08 3/25=0.12 4/25=0.16 6/25=0.24
5.常用立方数
1?3;=1 2?3;=8 3?3;=27 4?3;=64 5?3;=125 6?3;=216 7?3;=343 8?3;=512 9?3;=729
小学数学知识点总结13
角:
(1)角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。
这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
(2)角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。
所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边
角的符号:∠
角的种类:角的大小与边的长短没有关系;角的大小决定于角的.两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。
在动态定义中,取决于旋转的方向与角度。
角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。
以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
(1)锐角:大于0°,小于90°的角叫做锐角。
(2)直角:等于90°的角叫做直角。
(3)钝角:大于90°而小于180°的角叫做钝角。
乘法:
乘法是指一个数或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以说成5个4连加。
乘法算式中各数的名称:
“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
例:10(因数)×(乘号)200(因数)=(等于号)20xx(积)
平行:
在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。如图直线AB平行于直线CD,记作AB∥CD。平行线永不相交。
垂直:
两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
平行四边形:
在同一平面内有两组对边分别平行的四边形叫做平行四边形。
梯形:
梯形是指一组对边平行而另一组对边不平行的四边形。
平行的两边叫做梯形的底边,其中长边叫下底,短边叫上底;也可以单纯的认为上面的一条叫上底,下面一条叫下底。不平行的两边叫腰;夹在两底之间的垂线段叫梯形的高。
除法:
除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。
小学数学知识点总结14
1、人民币的单位有:元、角、分,相邻单位的进率是10,即1元=10角,1角=10分。
2、人民币按制作材料分为纸币和硬币两种,按单位分为元币、角币和分币三种。其中元币共有七种,分别是1元、2元、5元、10元、20元、50元和100元;角币共有三种,分别是1角、2角和5角;分币也有三种,分别是1分、2分和5分。
3、人民币的'换算:
(1)2元8角=(28)角
2元10角=(30)角
(2)2元8角=(2.80)元
2元10角=(3)元
(3)2.15元=(2)元(1)角(5)分
12.00元=(12)元
(4)0.70元=(7)角
0.05元=(5)分
4、换钱
(1)换成一种:1张10元可以换(5)张2元
(2)换两种以上:1张10元可以换(4)张2元和(2)张1元
5、解决问题类型:
毛巾8元5角,香皂4元8角,牙膏5元,牙刷2元6角
(1)牙膏和牙刷一共多少钱?
5元+2元6角=7元6角
答:牙膏和牙刷一共要7元6角。
(2)牙膏比牙刷贵多少钱?
5元—2元6角=2元4角
答:牙膏比牙刷贵2元4角。
(3)香皂比毛巾便宜多少钱?
8元5角—4元8角=3元7角
答:香皂比毛巾便宜3元7角。
(4)用10元钱买毛巾和牙刷,够吗?
8元5角+2元6角=11元1角
10元
答:不够。
(5)用10元钱买一块香皂,应找回多少钱?
10元—4元8角=5元2角
答:应找回5元2角。
(6)用10元钱买毛巾和香皂够吗?如果不够,还差多少钱?
8元5角+4元8角=13元3角
13元3角—10元=3元3角
答:不够,还差3元3角。
(7)20元钱能买哪些东西,应找回多少钱?
8元5角+4元8角+5元=18元3角
20元—18元3角=1元2角
答:20元可以买毛巾、香皂和牙膏,应找回1元2角。
小学数学知识点总结15
一、百分数的意义:
表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。
注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。
注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:把小数成分母是10、100、1000等的分数再化简。
(6)分数化小数:分子除以分母。
二、百分数应用题
1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几:(甲-乙)÷乙
求乙比甲少百分之几:(甲-乙)÷甲
3、求一个数的百分之几是多少。一个数(单位“1”)×百分率
4、已知一个数的.百分之几是多少,求这个数。
部分量÷百分率=一个数(单位“1”)
5、折扣、打折的意义:几折就是十分之几也就是百分之几十
折扣、成数=几分之几、百分之几、小数
八折=八成=十分之八=百分之八十=0.8
八五折=八成五=十分之八点五=百分之八十五=0.85
五折=五成=十分之五=百分之五十=0.5=半价
6、利率
(1)存入银行的钱叫做本金。
(2)取款时银行多支付的钱叫做利息。
(3)利息与本金的比值叫做利率。
利息=本金×利率×时间
税后利息=利息-利息的应纳税额=利息-利息×5%
注:国债和教育储蓄的利息不纳税
7、百分数应用题型分类
(1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几
(2)求甲比乙多百分之几——(甲-乙)÷乙×100%
(3)求甲比乙少百分之几——(乙-甲)÷乙×100%
【小学数学知识点总结】相关文章:
小学数学知识点总结12-12
小学数学知识点总结06-30
小学数学知识点总结05-16
小学数学知识点的总结09-08
小学的数学知识点总结07-31
小学数学知识点总结12-05
小学数学知识点总结归纳09-27
小学数学必备知识点总结整理06-24
北京小学数学知识点总结08-12
小学数学知识点总结优秀05-18