小学数学知识点总结

时间:2024-11-13 16:30:23 知识点总结 我要投稿

小学数学知识点总结【合集15篇】

  总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以使我们更有效率,让我们一起认真地写一份总结吧。总结你想好怎么写了吗?下面是小编为大家收集的小学数学知识点总结,欢迎大家分享。

小学数学知识点总结【合集15篇】

小学数学知识点总结1

  (一)笔算两位数加法,要记三条

  1、相同数位对齐;

  2、从个位加起;

  3、个位满10向十位进1。

  (二)笔算两位数减法,要记三条

  1、相同数位对齐;

  2、从个位减起;

  3、个位不够减从十位退1,在个位加10再减。

  (三)混合运算计算法则

  1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;

  2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

  3、算式里有括号的要先算括号里面的。

  (_)_位数的读法

  1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;

  2、中间有一个0或两个0只读一个“零”;

  3、末位不管有几个0都不读。

  (五)_位数写法

  1、从高位起,按照顺序写;

  2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。

  (六)_位数减法也要注意三条

  1、相同数位对齐;

  2、从个位减起;

  3、哪一位数不够减,从前位退1,在本位加10再减。

  (七)一位数乘多位数乘法法则

  1、从个位起,用一位数依次乘多位数中的每一位数;

  2、哪一位上乘得的积满几十就向前进几。

  (八)除数是一位数的除法法则

  1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;

  2、除数除到哪一位,就把商写在那一位上面;

  3、每求出一位商,余下的数必须比除数小。

  (九)一个因数是两位数的乘法法则

  1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;

  2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

  3、然后把两次乘得的数加起来。

  (十)除数是两位数的除法法则

  1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,2、除到被除数的哪一位就在哪一位上面写商;

  3、每求出一位商,余下的数必须比除数小。

  (十一)万级数的读法法则

  1、先读万级,再读个级;

  2、万级的数要按个级的读法来读,再在后面加上一个“万”字;

  3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

  (十二)多位数的读法法则

  1、从高位起,一级一级往下读;

  2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;

  3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。

  (十三)小数大小的比较

  比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。

  (十_)小数加减法计算法则

  计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。

  (十五)小数乘法的计算法则

  计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。

  (十六)除数是整数除法的法则

  除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

  (十七)除数是小数的除法运算法则

  除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。

  (十八)解答应用题步骤

  1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

  2、确定每一步该怎样算,列出算式,算出得数;

  3、进行检验,写出答案。

  (十九)列方程解应用题的一般步骤

  1、弄清题意,找出未知数,并用X表示;

  2、找出应用题中数量之间的相等关系,列方程;

  3、解方程;

  4、检验、写出答案。

  (二十)同分母分数加减的法则

  同分母分数相加减,分母不变,只把分子相加减。

  (二十一)同分母带分数加减的法则

  带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。

  (二十二)异分母分数加减的法则

  异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。

  (二十三)分数乘以整数的计算法则

  分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

  (二十_)分数乘以分数的计算法则

  分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。

  (二十五)一个数除以分数的计算法则

  一个数除以分数,等于这个数乘以除数的倒数。

  (二十六)把小数化成百分数和把百分数化成小数的方法

  把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;

  把百分数化成小数,把百分号去掉,同时小数点向左移动两位。

  (二十七)把分数化成百分数和把百分数化成分数的方法

  把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;

  把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。

  小学数学学习方法

  首先:课前复习。就是上课前花两三分钟把书本本节课要学的内容看一遍。仅仅是看一遍,过一遍。这样上课老师讲自己不但可以跟上老师节奏还可以再次巩固。其余不要干其他多余的事。

  其次:上课时候一定要专心听讲,如果觉得老师这里讲得都懂了的`话可以自己翻书看后面的内容。做习题的时候一定要一道一道往过做,不要越题做。因为对于课本来说这些都是基础,只有基础完全掌握后才能做难题。上课过程中第一次接触到的知识点概念等,一定一定要当堂背过。不然以后很难背过,不要妄想考前抱佛教再背

  另外要把笔记记准确,知道自己需要记什么不需要记什么,憋一个劲地往书上搬。字不要求整齐,自己能看懂就行。课本资料书上有例题,多看多记方法。先看课本基础,在看资料书上着重的。例题的方法一定一定要理解,不要去背!接着下课再看笔记,只是略微巩固记住。

  小学数学学习技巧

  养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。学生们不得不预习课本。我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。同时,在课堂上安排笔记也是必要的。在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。

小学数学知识点总结2

  1.整数加法

  (1)把两个数合并成一个数的运算叫做加法。

  (2)加数+加数=和,一个加数=和-另一个加数。

  2.整数减法

  (1)已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

  (2)被减数-减数=差、减数+差=被减数、被减数-差=减数。

  (3)加法和减法互为逆运算。

  3.整数乘法

  (1)求几个相同加数的和的简便运算叫做乘法。

  (2)在乘法里,0和任何数相乘都得0。

  (3)1和任何数相乘都的任何数。

  (4)一个因数×一个因数=积;一个因数=积÷另一个因数。

  4.整数除法

  (1)已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

  (2)在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。

  (3)乘法和除法互为逆运算。

  (4)在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

  (5)被除数÷除数=商,除数=被除数÷商被除数=商×除数。

  5.整数加法计算法则

  相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。

  相同数位对齐,从低位加起,哪一位上的.数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。

  6.整数乘法计算法则

  先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。

  7.整数除法计算法则

  先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。

小学数学知识点总结3

  一、学习目标:

  1.知道生活中有比万大的数;认识计数单位“万、十万、百万、千万和亿”,类推每相邻两个计数单位之间的关系,知道数级、数位;

  2使学生认识射线,直线,能识别射线、直线和线段三个概念之间的联系和区别;认识角和角的表示方法,知道角的各部分名称;

  3,在理解的基础上,掌握整数乘法的口算方法;培养类推迁移的能力和口算的能力;

  4.结合生活情境,通过自主探究活动,初步认识平行线、垂线;独立思考能力与合作精神得到和谐发展;

  5.在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。

  二、学习难点:

  1.认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

  2.角的意义;射线、直线和线段三者之间的关系;

  3.掌握整数乘法的口算方法;培养学生养成认真思考的良好学习习惯;

  4.初步认识平行线与垂线;理解永不相交的含义;

  5.掌握用整十数除商是一位数的口算方法;培养学生养成认真计算的良好学习习惯。

  三、知识点概括总结:

  1.亿以内的数的认识:

  十万:10个一万;

  一百万:10个十万;

  一千万:10个一百万;

  一亿:10个一千万。

  2.数级:数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

  通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。

  3.数级分类:

  (1)四位分级法:即以四位数为一个数级的分级方法。

  我国读数的习惯,就是按这种方法读的。如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……。这些级分别叫做个级,万级,亿级……。

  (2)三位分级法:即以三位数为一个数级的分级方法。

  这西方的.分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。

  4.数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。

  从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。

  这就说明计数单位和数位的概念是不同的。

  5.数的产生:

  阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。

  阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。

小学数学知识点总结4

  一、图形的变换

  图形变换的基本方式是平移、对称和旋转。

  1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

  (1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。

  (2)圆有无数条对称轴。

  (3)对称点到对称轴的距离相等。

  (4)轴对称图形的特征和性质:

  ①对应点到对称轴的距离相等;

  ②对应点的连线与对称轴垂直;

  ③对称轴两边的图形大小、形状完全相同。

  2、对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形。

  3、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

  (1)生活中的旋转:电风扇、车轮、纸风车

  (2)旋转要明确绕点,角度和方向。

  (3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。等边三角形绕中点旋转120度与原来重合。

  旋转的性质:

  (1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;

  (2)其中对应点到旋转中心的距离相等;

  (3)旋转前后图形的大小和形状没有改变;

  (4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;

  (5)旋转中心是唯一不动的点。

  4、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数

  二、因数和倍数

  1、整除:被除数、除数和商都是自然数,并且没有余数。整数与自然数的关系:整数包括自然数。

  2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

  例:12是6的倍数,6是12的因数。

  (1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。

  (2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的因数的求法:成对地按顺序找。

  (3)一个数的倍数的个数是无限的,最小的倍数是它本身。一个数的倍数的求法:依次乘以自然数。

  (4)2、3、5的倍数特征

  1)个位上是0,2,4,6,8的数都是2的倍数。

  2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  3)个位上是0或5的数,是5的倍数。

  4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。

  同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。

  5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

  3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。

  如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等

  4、自然数按能不能被2整除来分:奇数、偶数。

  奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。

  偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。最小的奇数是1,最小的偶数是0.

  关系:奇数+、-偶数=奇数奇数+、-奇数=偶数偶数+、-偶数=偶数。

  5、自然数按因数的个数来分:质数、合数、1、0四类.质数(或素数):只有1和它本身两个因数。

  合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。1:只有1个因数。“1”既不是质数,也不是合数。0:

  最小的质数是2,最小的合数是4,连续的两个质数是2、3。每个合数都可以由几个质数相乘得到,质数相乘一定得合数。20以内的质数:有8个(2、3、5、7、11、13、17、19)

  100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、

  43、47、53、59、61、67、71、73、79、83、89、97

  100以内找质数、合数的技巧:

  看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

  关系:奇数×奇数=奇数质数×质数=合数

  6、最大、最小

  A的最小因数是:1;最小的奇数是:1;A的最大因数是:A;最小的偶数是:0;A的最小倍数是:A;最小的质数是:2;最小的自然数是:0;最小的合数是:4;

  7、分解质因数:把一个合数分解成多个质数相乘的形式。用短除法分解质因数(一个合数写成几个质数相乘的形式)。...

  比如:30分解质因数是:(30=2×3×5)

  8、互质数:公因数只有1的两个数,叫做互质数。

  两个质数的互质数:5和7两个合数的`互质数:8和9一质一合的互质数:7和8

  两数互质的特殊情况:

  ⑴1和任何自然数互质;

  ⑵相邻两个自然数互质;

  ⑶两个质数一定互质;

  ⑷2和所有奇数互质;

  ⑸质数与比它小的合数互质;

  9、公因数、最大公因数

  几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。

  用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)几个数的公因数只有1,就说这几个数互质。

  如果两数是倍数关系时,那么较小的数就是它们的最大公因数。如果两数互质时,那么1就是它们的最大公因数。

  10、公倍数、最小公倍数

  几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

  用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。如果两数互质时,那么它们的积就是它们的最小公倍数。

  11、求最大公因数和最小公倍数方法

  用12和16来举例1、

  求法一:(列举求同法)

  最大公因数的求法:

  12的因数有:1、12、2、6、3、416的因数有:1、16、2、8、4最大公因数是4

  最小公倍数的求法:

  12的倍数有:12、24、36、48、16的倍数有:16、32、48、最小公倍数是482、求法二:(分解质因数法)

  12=2×2×316=2×2×2×2

  最大公因数是:2×2=4(相同乘)

  最小公倍数是:2×2×3×2×2=48(相同乘×不同乘)

  三长方体和正方体

  1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个

  面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。长方体特点:

  (1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

  (2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

  2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

  正方体特点:

  (1)正方体有12条棱,它们的长度都相等。

  (2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

  (3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。相同点长方体面不同点棱相对的棱的长度都相等都有6个面,6个面都是长方形。12条棱,(有可能有两个相对的面是正方形)。正方体

  8个顶点。6个面都是正方形。12条棱都相等。3、长方体、正方体有关棱长计算公式:

  长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4L=(a+b+h)×4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b

  正方体的棱长总和=棱长×12L=a×12正方体的棱长=棱长总和÷12a=L÷12

  4、长方体或正方体6个面和总面积叫做它的表面积。

  长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2

  S=2(ab+ah+bh)-abS=2(ah+bh)+ab

  无底又无盖长方体表面积=(长×高+宽×高)×2S=2(ah+bh)贴墙纸正方体的表面积=棱长×棱长×6S=a×a×6用字母表示:S=6a2

  生活实际:

  油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。

  注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)

  注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

  5、物体所占空间的大小叫做物体的体积。

  长方体的体积=长×宽×高V=abh长=体积÷宽÷高a=V÷b÷h

  宽=体积÷长÷高b=V÷a÷h高=体积÷长÷宽h=V÷a÷b

  正方体的体积=棱长×棱长×棱长

  V=a×a×a=a3读作“a的立方”表示3个a相乘,(即aaa)

  长方体或正方体底面的面积叫做底面积。

  长方体(或正方体)的体积=底面积×高用字母表示:V=Sh(横截面积相当于底面积,长相当于高)。

  注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

  6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

  固体一般就用体积单位,计量液体的体积,如水、油等。常用的容积单位有升和毫升也可以写成L和ml。

  1升=1立方分米1毫升=1立方厘米1升=1000毫升(1L=1dm31ml=1cm3)

  长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

  但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

  注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

  形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。排水法的公式:V物体=V现在-V原来也可以V物体=S×(h现在-h原来)V物体=S×h升高× 进率

  8、【体积单位换算】大单位小单位

  ÷进率小单位大单位

  进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)1立方分米=1000立方厘米=1升=1000毫升

  1立方厘米=1毫升

  1平方米=100平方分米=10000平方厘米1平方千米=100公顷=1000000平方米

  注意:长方体与正方体关系

  把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

  重量单位进率,时间单位进率,长度单位进率× 进率

  【单位换算】大单位小单位÷进率小单位大单位

  长度单位:1千米=1000米1分米=10厘米1厘米=10毫米1分米=100毫米1米=10分米=100厘米=1000毫米(相邻单位进率10)

  面积单位:1平方千米=100公顷1平方米=100平方分米

  1平方分米=100平方厘米1公顷=10000平方米(平方相邻单位进率100)质量单位:1吨=1000千克1千克=1000克

  人民币:1元=10角1角=10分1元=100分

  四分数的意义和性质

  1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,

  这样的一份或几份都可以用分数来表示。

  2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)

  3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如

  数单位是。

  5145的分

  4、分数与除法A÷B=

  5、真分数和假分数、带分数

  AB(B≠0,除数不能为0,分母也不能够为0)例如:4÷5=

  1、真分数:分子比分母小的分数叫真分数。真分数

  (2)分数化为小数:

  方法一:把分数化为分母是10、100、1000

  如:

  310=0.3=

  53610=0.6

  14=

  25100=0.25

  方法二:用分子÷分母

  如:

  34=3÷4=0.75

  (3)带分数化为小数:

  先把整数后的分数化为小数,再加上整数

  如:2

  310=2+0.3=2.3

  12、比分数的大小:分母相同,分子大,分数就大;分子相同,分母小,分数才大。

  分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。

  13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。

  1218=0.5

  3814=0.25=0.75=0.2=0.4=0.6

  455558312345=0.8

  =0.125=0.375=0.625

  78=0.875

  120=0.05

  125=0.04。

  14、两个数互质的特殊判断方法:

  ①1和任何大于1的自然数互质。

  ②2和任何奇数都是互质数。

  ③相邻的两个自然数是互质数。

  ④相邻的两个奇数互质。

  ⑤不相同的两个质数互质。

  ⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。

  15、求最大公因数的方法:

  ①倍数关系:最大公因数就是较小数。

  ②互质关系:最大公因数就是1

  ③一般关系:从大到小看较小数的因数是否是较大数的因数。

  16、分数知识图解:

  分数的产生

  分数的意义分数与意义:把单位1平均分成几份,表示其中的一份或几份。

  分数与除法:分子(被除数),分母(除数),分数值(商)。真分数真分数小于1

  真分数与假分数假分数假分数大于1或等于1

  带分数(整数部分和真分数)

  假分数化带分数、整数(分子除以分母,商作整数部分,余数作分子)

  分数的基本性质:分数的分子、分母同时扩大或缩小相同的倍数,

  分数的基本性质分数的大小不变。

  通分、通分子:化成分母不同,大小不变的分数(通分)

  最大公因数

  约分求最大公因数

  最简分数分子分母互质的分数(最简真分数、最简假分数)约分及其方法最小公倍数

  通分求最小公倍数

  分数比大小(通分、通分子、化成小数)通分及其方法

  小数化分数小数化成分母是10、100、1000的分数再化简

  分数和小数的互化

  分数化小数分子除以分母,除不尽的取近似值

  五分数的加法和减法

  (1)同分母分数加、减法(分母不变,分子相加减)

  1、分数数的加法和减法

  (2)异分母分数加、减法(通分后再加减)

  (3)分数加减混合运算:同整数。

  (4)结果要是最简分数

  2、带分数加减法:带分数相加减,整数部分和分数部分分别相加减,再把所得的结果

  合并起来。

  附:具体解释

  (一)同分母分数加、减法

  1、同分母分数加、减法:

  同分母分数相加、减,分母不变,只把分子相加减。

  2、计算的结果,能约分的要约成最简分数。

  (二)异分母分数加、减法

  1、分母不同,也就是分数单位不同,不能直接相加、减。

  2、异分母分数的加减法:

  异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。

  (三)分数加减混合运算

  1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。

  在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

  2、整数加法的交换律、结合律对分数加法同样适用。

  3、六统计与数学广角

  众数一组数据中出现次数最多的数叫众数。众数能够反映一组数据的集中情况。

  统计在一组数据中,众数可能不止一个,也可能没有众数。复式折线统计图

  综合应用打电话的最优方案

  121-12

  1612-13

  11213-14

  1201 -15

  1、众数:一组数据中出现次数最多的一个数或几个数,就是这组数据的众数。

  众数能够反映一组数据的集中情况。

  在一组数据中,众数可能不止一个,也可能没有众数。

  2、中位数:

  (1)按大小排列;

  (2)如果数据的个数是单数,那么最中间的那个数就是中位数;

  (3)如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。

  3、平均数的求法:总数÷总份数=平均数

  4、一组数据的一般水平:

  (1)当一组数据中没有偏大偏小的数,也没有个别数据多次出现,用平均数表示一般水平。

  (2)当一组数据中有偏大或偏小的数时,用中位数来表示一般水平。

  (3)当一组数据中有个别数据多次出现,就用众数来表示一般水平。

  4、平均数、中位数和众数的联系与区别:

  ①平均数:

  一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。容易受极端数据的影响,表示一组数据的平均情况。②中位数:

  将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。它不受极端数据的影响,表示一组数据的一般情况。③众数:

  在一组数据中出现次数最多的数叫做这组数据的众数。它不受极端数据的影响,表示一组数据的集中情况。

  5、统计图:我们学过条形统计图、复式折线统计图。

  条形统计图优点:条形统计图能形象地反映出数量的多少。

  折线统计图优点:折线统计图不仅能表示出数量的多少,还能反映出数量的变化情况。

  注:

  ①画图时注意:一“点”(描点)、二“连”(连线)三“标”(标数据)。

  ②要用不同的线段分别连接两组数据中的数。

  6、打电话:规律人人不闲着,每人都在传。(技巧:已知人数依次×2)

  (1)逐个法:所需时间最多。

  (2)分组法:相对节约时间。

  (3)同时进行法:最节约时间。

  七数学广角

  用天平找次品规律:

  1、把所有物品尽可能平均地分成3份,(如余1则放入到最后一份中;如余2则分别放入到前两份中),保证找出次品而且称的次数一定最少。

  2、数目与测试的次数的关系:2~3个物体,保证能找出次品需要测的次数是1次4~9个物体,保证能找出次品需要测的次数是2次10~27个物体,保证能找出次品需要测的次数是3次28~81个物体,保证能找出次品需要测的次数是4次82~243个物体,保证能找出次品需要测的次数是5次

  244~729个物体,保证能找出次品需要测的次数是6次

  3、找次品规律

  12345次数

  33×33×3×33×3×3×33×3×3×3×3

  392781243次品个数

小学数学知识点总结5

  1、一个因数是两位数的乘法规则

  (1)先用两位数上的数乘以另一个因数,得数的末位与两位数对齐;

  (2)用两位数十位数乘以另一个因数,得数末位与两位数十位对齐;

  (3),然后将两次乘得的数量加起来。

  2、除数是两位数的除法

  (1)从被除数高位开始,如果比除数小,先用除数试除被除数前两位。

  (2)除去被除数的哪一个在上面写商;

  (3)每求出一个商人,剩下的数字必须小于除数。

  3、万级数读法

  (1)、先读万级,再读个级;

  (2)万级数要按个级读法读,后面加一个万字;

  (3)不管每个级别的末位有多少0,其他数字有0或连续几个零,只读一个零。

  4、多位数读法

  (1)从高位开始,一级一级往下读;

  (2)读亿级或万级时,按个级数读法读,再加亿或万字;

  (3)不读每级末尾的0,其他数字有0或连续几个0只读一个零。

  5、计算小数乘法,先按乘法规则计算积累,然后看因数中的几个小数,从积累的右侧计算几个小数点。

  6、除数是整数小数除法,按照整数除法的规则去除。商业小数点应与被除数小数点对齐。如果被除数末尾仍有余数,则在余数后添加0,然后继续去除。

  7、除数是小数除法。首先移动除数小数点,使其成为整数;除数的小数点向右移动,被除数的小数点也向右移动(除数末尾的位数不足以补充0),然后根据除数为整数的小数除法计算。

  8、同分母分数加减,分母不变,只加减分子。

  9、带分数加减,先将整数部分和分数部分加减,再将所得数合并。

  10。分数乘以整数,分母不变。

  11、异分母分数加减,先通分,再按同分母分数加减法计算。

  12、围成图形所有边长的总和是图形的周长。

  13、求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1、这种求近似数的方法,叫做四舍五入法。

  两个数相加,交换加数位置后,其和不变,称为加法交换律。

  15、三个数相乘,先将前两个数相乘,再与第三个数相乘,或先将后两个数相乘,再与第一个数相乘,其积累不变,称为乘法结合法。

  已知两个因素的积累和其中一个因素,另一个因素的运算称为除法。

  17、积=因数×因数一个因数=积÷另一个因数。

  面积计量单位及进度:

  平方公里,公顷,平方分米,平方厘米

  1平方千米=100公顷

  1平方千米=1000000平方米

  1公顷=10000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  19、质量单位及进度:

  吨、公斤、公斤、克

  1吨=1000千克

  1千克=1公斤

  1千克=1000克

  体积容积计量单位及进度:

  立方米,立方分米,立方厘米,升,毫升

  1立方米=1000立方分米

  1立方分米=1000立方厘米

  1立方分米=1升1立方厘米=1毫升

  长度计量单位及进度:

  公里(公里),米,分米,厘米,毫米

  1千米=1公里1千米=1000米

  1米=10分米1分米=10厘米

  1厘米=10毫米

  22、长方形面积=长×宽度,计算公式S=ab

  23、正方形面积=边长×边长,计算公式S=a×a=a2

  24、长方形周长=(长宽)×2,计算公式C=(a b)×2

  25、正方形周长=边长×4,计算公式C=4a

  26、平行四边形面积=底×高,计算公式S=ah

  三角形面积=底×高÷2,计算公式S=a×h÷2

  28、梯形面积=(上底下底)×高÷2,计算公式S=(a b)×h÷2

  29、长方体积=长×宽×高,计算公式V=abh

  30、圆的面积=圆周率×半径平方,计算公式V=πr2

  31、正方体积=棱长×棱长×棱长,计算公式V=a3

  32、长方体和正方体的体积可以写成底面积×高,计算公式V=sh

  34、圆柱体积=底面积×高,计算公式V=sh

  35、前项和后项同时乘以或除以相同数(0除外)的'比值,称为比的基本性质。

  小学数学学习方法

  1、求教与自学相结合。在学习过程中,我们不仅要争取教师的指导和帮助,还要依靠教师。我们必须主动学习、探索和获取,并在认真学习和研究的基础上寻求教师和学生的帮助。

  2、学习与使用相结合,勤于实践。在学习过程中,我们应该准确掌握抽象概念的本质意义。了解从实际模型抽象到理论的演变过程;对于所学的理论知识,我们应该在更广泛的范围内寻找其具体的例子,使其具体化,并所学的理论知识和思维方法应用到实践中。

  3、学习与思考相结合。在学习过程中,要认真研究课本内容,提问,追本穷源。每一个概念、公式、定理都要找出来龙去脉、前因后果、内在联系,以及推导过程中包含的数学思想和方法。

  4、博观约取,博返约。教科书是学生获取知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本外,还要阅读相关课外资料,拓展知识领域。

  5、及时复习,增强记忆力。课堂上学习的内容必须在同一天消化,先复习,再练习。复习工作必须经常进行。每个单元结束后,应总结和整理所学知识,使其系统、深入。

  6、学习中的总结和评价是学习的持续和改进,有利于建立知识体系,掌握解决问题的规则,调整学习方法和态度,提高判断能力。在学习过程中,我们应该注意总结听力、阅读和解决问题的收获和经验。

小学数学知识点总结6

  1、用竖式计算两位数加法时:①相同数位对齐,加号写在高位下行之前。

  ②用尺子画横线。

  ③从个位加起

  ④如果个位满10,向十位进1,写在个位、十位之间,

  不进位不写1

  用竖式计算两位数减法时:①相同数位对齐,减号写在高位下行之前。

  ②用尺子画横线。

  ③从个位减起

  ④如果个位不够减,从十位退1,到个位作10再减(借一要在头上写点),计算时十位要记得减去退掉的1。不借位不写点

  ⑤得数写在横式上

  2、估算:把一个接近整十整百的数看作整十整百来计算。

  方法:个位小于5的少看,个位等于或大于5的多看,看成最为接近的整十或整百数。“四舍五入”

  如:49+42≈9028+45+24≈10098—17≈80

  50 4030 50 20100 20更深一步的估计是能够估出比80大

  注:当问题里出现“大约”两个字时,就需要估算。

  3、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算,用“比”字两边的较大数减去较小数。

  4、多几、少几已知的问题。比谁少几,就用谁减去几;未知数比谁多几,就用谁加上几。

  方法:①根据已知,判断出与要求的未知,谁多谁少②求多的用加法,求少的用减法

  基数和序数的区别

  一、意思不同

  基数是集合论中刻画任意集合大小的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一一对应,是两个对等的`集合。序数是在基数的基础上再增加一层意思。

  二、用处不同

  基数可以比较大小,可以进行运算。

  例如:

  设|A|=a,|B|=β,定义a+β=|{(a,0):a∈A}∪{(b,1):b∈B}|。另,a与β的积规定为|AxB|,A×B为A与B的笛卡儿积。

  序数,汉语表示序数的方法较多。通常是在整数前加“第”,如:第一,第二。也有单用基数的。如:五行:一曰水,二曰火,三曰木,四曰金,五曰土。

  三、写法

  基数:1、2、3

  序数:第1、第2、第3

  数与计算知识点

  1、分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

  2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。

  3、分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

  4、分数乘整数:数形结合、转化化归

  5、倒数:乘积是1的两个数叫做互为倒数。

小学数学知识点总结7

  一、概念和公式

  方差的概念与计算公式,例1两人的5次测验成绩如下:X:50,100,100,60,50E(X)=72;Y:73,70,75,72,70E(Y)=72。平均成绩相同,但X不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为D(X):直接计算公式分离散型和连续型,具体为:这里是一个数。推导另一种计算公式得到:“方差等于平方的均值减去均值的平方”。其中,分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。

  基本定义:设X是一个随机变量,若E{[X-E(X)]2}存在,则称E{[X-E(X)]2}为X的方差,记为D(X),Var(X)或DX。即D(X)=E{[X-E(X)]2}称为方差,而σ(X)=D(X)0.5(与X有相同的量纲)称为标准差(或均方差)。即用来衡量一组数据的离散程度的统计量。方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大。否则,反之)若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。

  当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小

  二、计算方法和原理

  若x1,x2,x3......xn的平均数为m则方差方差公式方差公式例1两人的5次测验成绩如下:

  X:50,100,100,60,50E(X)=72;

  Y:73,70,75,72,70E(Y)=72。

  平均成绩相同,但X不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。

  单个偏离是消除符号影响方差即偏离平方的均值,记为D(X):

  直接计算公式分离散型和连续型,具体为:这里是一个数。推导另一种计算公式

  得到:“方差等于平方的均值减去均值的平方”。

  其中,分别为离散型和连续型的计算公式。称为标准差或均方差,方差描述波动。

  设一组数据x1,x2,x3……xn中,各组数据与它们的平均数x(拔)的差的平方分别是(x1-x拔)2,(x2-x拔)2……(xn-x拔)2,那么我们用他们的平均数来衡量这组数据的波动大小,并把它叫做这组数据的方差。

  方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:

  (1)随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作SSw,组内自由度dfw。

  (2)实验条件,即不同的'处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和表示,记作SSb,组间自由度dfb。

  总偏差平方和SSt=SSb+SSw。

  组内SSw、组间SSb除以各自的自由度(组内dfw=n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSbMSw(远远大于)。

  MSb/MSw比值构成F分布。用F值与其临界值比较,推断各样本是否来自相同的总体

  三、计算和性质

  方差的计算公式D(X)=E(X)-[E(X)]

  例题:随机变量X的分布函数F(X)=﹛0,x0﹜,{x,0=x=1},{1,x1},求E(X),D(X).

  步骤:E(X)=∫{-∞,+∞}xdF(x)=∫{0,1}3xdx=3/4,E(X)=∫{-∞,+∞}xdF(x)=∫{0,1}3x^4dx=3/5

  D(X)=E(X)-[E(X)]=3/80

  若x1,x2,x3......xn的平均数为m

  则方差s^2=1/n[(x1-m)^2+(x2-m)^2+.......+(xn-m)^2]

  方差即偏离平方的均值,称为标准差或均方差,方差描述随机变量x的波动程度。

  计算时有些是采取1/n,有些是采取1/(n-1)。理解这个问题,首先要知道估计的无偏性,无偏性有什么好处作用。样本估计量(如[1/(n-1)][(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2])的数学期望等于整体方差,说明这个样本估计量搜索是无偏的。从分析测试的观点看,无偏性意味着测定的准确度。

  方差反映了随机变量取值的平均分散程度,D(X)=E[X-E(X)]~2,实质上,方差也是一个数学期望,它是一个特殊随机变量的数学期望。学习方法

  性质:1、D(C)=0;

  2、D(CX)=C~2xD(X);

  3、D(X+C)=D(X);

  4、若X与Y独立,则D(X+或-Y)=D(X)+D(Y);

  方差

  方差是实际值与期望值之差平方的期望值,而标准差是方差算术平方根。在实际计算中,我们用以下公式计算方差。

  方差是各个数据与平均数之差的平方的平均数,即s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],其中,x_表示样本的平均数,n表示样本的数量,xn表示个体,而s^2就表示方差。

  而当用(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]作为样本X的方差的估计时,发现其数学期望并不是X的方差,而是X方差的(n-1)/n倍,[1/(n-1)][(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]的数学期望才是X的方差,用它作为X的方差的估计具有“无偏性”,所以我们总是用[1/(n-1)]∑(xi-X~)^2来估计X的方差,并且把它叫做“样本方差”。

  方差,通俗点讲,就是和中心偏离的程度!用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。记作S。在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。

  定义设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X),Var(X)或DX。

  即D(X)=E{[X-E(X)]^2}称为方差,而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差(或均方差)。即用来衡量一组数据的离散程度的统计量。

  方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差.方差越大,离散程度越大。否则,反之)

  若X的取值比较集中,则方差D(X)较小

  若X的取值比较分散,则方差D(X)较大。

  因此,D(X)是刻画X取值分散程度的一个量,它是衡量X取值分散程度的一个尺度。

  计算由定义知,方差是随机变量X的函数

  g(X)=∑[X-E(X)]^2pi

  数学期望。即:

  由方差的定义可以得到以下常用计算公式:

  D(X)=∑xipi-E(x)

  D(X)=∑(xipi+E(X)pi-2xipiE(X))

  =∑xipi+∑E(X)pi-2E(X)∑xipi

  =∑xipi+E(X)-2E(X)

  =∑xipi-E(x)

  方差其实就是标准差的平方。

  初二数学知识点归纳:倒数

  初二数学知识点归纳:倒数

  倒数就是指数学上设一个数x与其相乘的积为1的数,记为1/x或x。

  倒数

  1.求一个分数的倒数,例如3/4,我们只须把3/4这个分数的分子和分母交换位置,即得3/4的倒数为4/3。

  2.求一个整数的倒数,只须把这个整数看成是分母为1的分数,然后再按求分数倒数的方法即可得到。

  如12,即12/1,再把12/1这个分数的分子和分母交换位置,把分子做分母,分母做分子,则有1/12。

  即12倒数是1/12。

  说明:倒数是本身的数是1和-1。(0没有倒数)

  把0.25化成分数,即1/4

  再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子.则是4/1

  再把4/1化成整数,即4

  所以0.25是4的倒数。也可以说4是0.25的倒数

  也可以用1去除以这个数,例如0.25

  1/0.25等于4

  所以0.25的倒数4.

  因为乘积是1的两个数互为倒数。

  分数、整数也都使用这种规律。

  求倒数的约分问题在求倒数过程中,当然要约分,如14/35

  约分以后成2/5

  最后按照求倒数的方法求出14/35的倒数。

  数论倒数

  而在数论中,还有数论倒数的概念,如果两个数a和b,它们的乘积关于模m余1,那么我们称它们互为关于模m的数论倒数。比如2x3=1(mod5),所以3是2关于5的数论倒数。数论倒数在中国剩余定理中非常重要。而辗转相除法提供了计算数论倒数的方法。

  群论中的倒数

  近世代数中有群,域,环等概念,其中定义了抽象的乘法运算和单位元。同样的,关于其乘法如果有乘法逆,同样可以看成是倒数。

小学数学知识点总结8

  1.奇偶性

  问题

  奇+奇=偶奇×奇=奇

  奇+偶=奇奇×偶=偶

  偶+偶=偶偶×偶=偶

  2.位值原则

  形如:abc=100a+10b+c

  3.数的整除特征:

  整除数特征

  2末尾是0、2、4、6、8

  3各数位上数字的和是3的倍数

  5末尾是0或5

  9各数位上数字的和是9的倍数

  11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数

  4和25末两位数是4(或25)的.倍数

  8和125末三位数是8(或125)的倍数

  7、11、13末三位数与前几位数的差是7(或11或13)的倍数

  4.整除性质

  ①如果c|a、c|b,那么c|(ab)。

  ②如果bc|a,那么b|a,c|a。

  ③如果b|a,c|a,且(b,c)=1,那么bc|a。

  ④如果c|b,b|a,那么c|a.

  ⑤a个连续自然数中必恰有一个数能被a整除。

  5.带余除法

  一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r

  当r=0时,我们称a能被b整除。

  当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r,0≤r

  小学生奥数知识点

  数列求和:

  等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

  基本概念:首项:等差数列的第一个数,一般用a1表示;

  项数:等差数列的所有数的个数,一般用n表示;

  公差:数列中任意相邻两个数的差,一般用d表示;

  通项:表示数列中每一个数的公式,一般用an表示;

  数列的和:这一数列全部数字的和,一般用Sn表示。

  基本思路:等差数列中涉及五个量:a1,an,d,n,sn,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

  基本公式:通项公式:an=a1+(n-1)d;

  通项=首项+(项数一1)×公差;

  数列和公式:sn,=(a1+an)×n÷2;

  数列和=(首项+末项)×项数÷2;

  项数公式:n=(an+a1)÷d+1;

  项数=(末项-首项)÷公差+1;

  公差公式:d=(an-a1))÷(n-1);

  公差=(末项-首项)÷(项数-1);

  关键问题:确定已知量和未知量,确定使用的公式

  小学奥数几何知识点整理

  鸟头定理即共角定理。

  燕尾定理即共边定理的一种。

  共角定理:

  若两三角形有一组对应角相等或互补,则它们的面积比等于对应角两边乘积的比。

  共边定理:

  有一条公共边的三角形叫做共边三角形。

  共边定理:设直线AB与PQ交与M则S△PAB/S△QAB=PM/QM

  这几个定理大都利用了相似图形的方法,但小学阶段没有学过相似图形,而小学奥数中,常常要引入这些,实在有点难为孩子。

  为了避开相似,我们用相应的底,高的比来推出三角形面积的比。

  例如燕尾定理,一个三角形ABC中,D是BC上三等分点,靠近B点。连接AD,E是AD上一点,连接EB和EC,就能得到四个三角形。

  很显然,三角形ABD和ACD面积之比是1:2

  因为共边,所以两个对应高之比是1:2

  而四个小三角形也会存在类似关系

  三角形ABE和三角形ACE的面积比是1:2

  三角形BED和三角形CED的面积比也是1:2

  所以三角形ABE和三角形ACE的面积比等于三角形BED和三角形CED的面积比,这就是传说中的燕尾定理。

  以上是根据共边后,高之比等于三角形面积之比证明所得。

  必须要强记,只要理解,到时候如何变形,你都能会做。至于鸟头定理,也不要死记硬背,掌握原理,用起来就会得心应手。

小学数学知识点总结9

  1、一个因数是两位数的乘法法则

  (1)、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;

  (2)、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

  (3)、然后把两次乘得的数加起来。

  2、除数是两位数的除法法则

  (1)、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,(2)、除到被除数的哪一位就在哪一位上面写商;

  (3)、每求出一位商,余下的数必须比除数小。

  3、万级数的读法法则

  (1)、先读万级,再读个级;

  (2)、万级的数要按个级的读法来读,再在后面加上一个“万”字;

  (3)、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

  4、多位数的读法法则

  (1)、从高位起,一级一级往下读;

  (2)、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;

  (3)、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。

  5、计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。

  6、除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

  7、除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。

  8、同分母分数相加减,分母不变,只把分子相加减。

  9、带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。

  10、分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

  11、异分母分数相加减,先通分,然后按照同分母分数加减的`法则进行计算。

  12、围成一个图形所有边长的总和就是这个图形的周长。

  13、求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。

  14、两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。

  15、三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。

  16、已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。

  17、积=因数×因数 一个因数=积÷另一个因数。

  18、面积计量单位及进率:

  平方千米、公顷、平方米、平方分米、平方厘米

  1平方千米=100公顷

  1平方千米=1000000平方米

  1公顷=10000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  19、质量单位及进率:

  吨、千克、公斤、克

  1吨=1000千克

  1千克=1公斤

  1千克=1000克

  20、体积容积计量单位及进率:

  立方米、立方分米、立方厘米、升、毫升

  1立方米=1000立方分米

  1立方分米=1000立方厘米

  1立方分米=1升 1立方厘米=1毫升

  21、长度计量单位及进率:

  千米(公里)、米、分米、厘米、毫米

  1千米=1公里 1千米=1000米

  1米=10分米 1分米=10厘米

  1厘米=10毫米

  22、长方形面积=长×宽,计算公式S=ab

  23、正方形面积=边长×边长,计算公式S=a×a=a2

  24、长方形周长=(长+宽)×2,计算公式C=(a+b)×2

  25、正方形周长=边长×4,计算公式C=4a

  26、平行四边形面积=底×高,计算公式S=ah

  27、三角形面积=底×高÷2,计算公式S=a×h÷2

  28、梯形面积=(上底+下底)×高÷2,计算公式S=(a+b)×h÷2

  29、长方体体积=长×宽×高,计算公式V=abh

  30、圆的面积=圆周率×半径平方,计算公式V=πr2

  31、正方体体积=棱长×棱长×棱长,计算公式V=a3

  32、长方体和正方体的体积都可以写成底面积×高,计算公式V=sh

  34、圆柱的体积=底面积×高,计算公式V=sh

  35、比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。

  小学数学的学习方法

  1、求教与自学相结合,在学习过程中,既要争取教师的指导和帮助,但是又不能处处依靠教师。必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。

  2、学用结合,勤于实践,在学习过程中,要准确地掌握抽象概念的本质含义。了解从实际模型中抽象为理论的演变过程;对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。

  3、学习与思考相结合,在学习过程中,对课本的内容要认真研究,提出疑问,追本穷源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果,内在联系,以及蕴含于推导过程中的数学思想和方法。

  4、博观约取,由博返约,课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本外,还要阅读有关的课外资料,来扩大知识领域。

  5、及时复习,增强记忆。课堂上学习的内容,必须当天消化,要先复习,后做练习。复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。

  6、学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、解题规律的掌握、学习方法和态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。

小学数学知识点总结10

  第一章————除法

  1、用乘法口诀做除法,余数一定要比除数小;

  2、应用题中,除数和余数的单位不一样;

  商的单位是问题的单位,余数的单位和被除数的单位相同;

  3、解决生活问题,如提的问题是“至少需要几条船?”,用进一法(用商加1)”,乘船、坐车、坐板凳等,读懂题目再作答。

  第二章————方向与位置(认识方向)

  1、地图上的方向口诀:上北下南,左西右东;

  辨认方向时要画方向标。

  2、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;

  “小猪在小马的()方”,“小马的()方是小猪”,是以小马家为中心点,画出方位坐标,确定方向。

  3、太阳早上从东边升起,西边落下;

  指南针一头指着(),一头指着()。小明早上面向太阳时,他的前面是(),后面是(),左面是(),右面是()

  4、当吹东南风时,红旗往()飘;

  吹西北风时,红旗往()飘。

  第三章————生活中的大数(认识10000以内的数)

  1、计数器上从右边数起第一位是()位,第二位是()位,第三位是()位,第四位是()位,千位的左边是()位,右边是()位。

  2、一个四位数最高位是()位,它的千位是5,个位是2,其他的数位是0,它是()。

  3、在8536中,8在()位上,表示()。5在()位上,表示()。3在()位上,表示()。6在()位上,表示()。

  4、由三个千,五个一组成的'数是(),由9个一,两个百和一个千组成的数是()。

  5、读数时,要从高读起,中间有一个或两个0,都只读一个0个“零”;

  末尾不管有几个“0”,都不读;

  写数,末尾不管有几个0,都不读。写数时,从高位写起,按照数位顺序表写,中间或末尾哪一位上没有数,就写“0”占位。

  6、10个十是(),10个一百是(),10个一千是(),100个一百是()。10000里面有()个百,1000里面有()个十。

  7、最大的三位数是(),最小的三位数是()。最大的四位数是(),最小的四位数是()。

  8、比较大小时,先比较位数,位数多的数就大,位数少的数就小;

  位数相同时,从最高位开始比较,最高位上的数字相同的,就比下一位,直到比出大小。从大到小用“>”,从小到大用“<”。

  第四章————测量1、毫米(mm)、厘米(cm)、分米(dm)、米(m),相邻单位之间的进率是“10”;

  2、1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米,1分米=100毫米,1000米=1千米;

  3、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;

  4、长度单位的加减法,米加米,分米加分米.......就是把相同的单位进行加减。

  第五章————加与减1、口算整百加减整百时,想成几个百加减几个百,加减整十数的算理也相同。

  2、计算时要注意:(1)、相同数位要对齐,从个位算起。(2)、计算加法时,哪一位相加满十,要向前一位“进一”。(3)、计算减法时,哪一位不够减时,要向前一位“借1”,但是不要忘记退位时要减1;

  3、在估算中,如果估算到百位,就看十位数是多少,如果十位上的数大于5,则百位进1,十位和个位舍去,变为0,如估算678,就变为700;

  如果十位上的数小于5,则百位不变,十位和个位舍去,变为0,如估算607,就变为600;

  4、加数+加数=和一个加数=和-另一个加数如:()+156=368(用368-156计算)280+()=760(用760-280计算)

  5、被减数-减数=差被减数=减数+差减数=被减数-差如:()-156=368(用156+368计算)

  980-()=760(用980-760计算)

  6、加法的验算方法:(1)交换加数的位置,看和是否相同,(2)用和减去其中一个加数,看是否等于另一个加数;

  7、减法的验算方法:(1)用被减数减去差,看结果是否等于减数,(2)用减数加上差,看结果是否等于被减数。注意:运算时不要抄错数,也不要直接把验算结果抄上。

  第六章————认识角1、每个角都是由1个顶点和2条边组成;

  2、按角的大小,将角分为锐角、直角、钝角,所有的直角都相等,比直角小的是锐角,比直角大的是钝角。要知道一个角是什么角,可以用三角板上的直角比一比。

  3、比较角的大小时要注意:角的大小与边的长短无关,与角的张口大小有关,张口越大角就越大;

  4、正方形有四个直角,四条边都相等;

  长方形有四条边,四个直角,长方形的对边相等;

  5、平行四边形有四条边,有2个锐角,2个钝角,对边相等,对角相等。

  第七章————时、分、秒1、钟面上有12个大格,每个大格里有5个小格,一共有60个小格;

  2、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分钟;

  3、分针走一小格是1分,走一大格是5分,走一圈是60分,也就是1小时;

  4、时针走一大格是1小时,走一圈是12小时;

  5、时、分、秒相邻单位的进率是60;

  1时=60分1分=60秒6、比较时间,首先要观察,统一单位之后再比较大小。

  7、时间的加减:分减分,时减时,当分不够减时,要向前一位借1,化成60,再相加减;

  第八章————统计1、记录并学会计算,谁多,谁少。

小学数学知识点总结11

  1.乘法交换律

  乘法交换律的概念:两个因数交换位置,积不变。字母公式:a×b=b×a

  2.乘法结合律

  乘法结合律的概念:先乘前两个数,或者先乘后两个数,积不变。字母公式a×b×c=a×(b×c)

  3.乘法分配律

  乘法分配律的`概念为:两个数与一个数相乘,可以先把它们与这个数分别相乘,再相加。字母公式:(a+b)×c=a×c+b×c

小学数学知识点总结12

  一、学习目标:

  1.进一步掌握含有同一级运算的运算顺序;

  2.通过具体的活动,认识方向与距离对确定位置的作用;发展空间观念;

  3.能运用运算定律进行一些简便运算;培养根据具体情况,选择算法的意识与能力,发展思维的灵活性;

  4.了解小数的产生;理解小数的意义;

  5.掌握小数的计算单位及单位间的进率;

  6.理解三角形的意义,掌握三角形的特征和特性;理解三角形三边不等的关系;

  7.理解掌握小数加、减法的方法;培养计算能力;

  8.探究和理解乘法交换律、结合律,能运用运算定律进行一些简便运算。

  二、学习难点:

  1.能根据任意方向和距离确定物体的位置;对任意角度具体方向的准确描述;

  2.理解和抽象小数的意义;抽象小数的意义;

  3.掌握三角形的特性;懂得判断三角形三条线段能否构成一个三角形的方法,并能用于解决有关的问题;

  4.计算方法;退位减法;

  5.探究和理解乘法交换律、结合律。

  三、知识点概括总结:

  1.整数加法:

  (1)把两个数合并成一个数的运算叫做加法。(2)在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。(3)加数+加数=和,一个加数=和-另一个加数。2.整数减法:

  (1)已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

  (2)在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。(3)加法和减法互为逆运算。3.整数乘法:

  (1)求几个相同加数的和的简便运算叫做乘法。

  (2)在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。(3)在乘法里,0和任何数相乘都得0。(4)1和任何数相乘都的任何数。

  (5)一个因数×一个因数=积;一个因数=积÷另一个因数。4.整数除法:

  (1)已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

  (2)在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。(3)乘法和除法互为逆运算。

  (4)在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

  (5)被除数÷除数=商,除数=被除数÷商被除数=商×除数。

  5.整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。

  6.整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。

  7.整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。8.整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。9.运算顺序:

  (1)小数、分数、整数:小数四则运算的运算顺序和整数四则运算顺序相同;分数四则运算的运算顺序和整数四则运算顺序相同。

  (2)没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。

  (3)有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。(4)第一级运算:加法和减法叫做第一级运算。(5)第二级运算:乘法和除法叫做第二级运算。10.加法交换律:

  加法交换律的概念为:两个加数交换位置,和不变。字母公式:a+b+c=(b+a)+c11.加法结合律:

  加法结合律的概念为:先把前两个数相加,或者先把后两个数相加,和不变。字母公式:a+b+c=a+(b+c)12.乘法交换律:

  乘法交换律的概念为:两个因数交换位置,积不变。字母公式:a×b=b×a13.乘法结合律:

  乘法结合律的概念为:先乘前两个数,或者先乘后两个数,积不变。字母公式:a×b×c=a×(b×c)14.乘法分配律:

  乘法分配律的概念为:两个数与一个数相乘,可以先把它们与这个数分别相乘,再相加。字母公式:(a+b)×c=a×c+b×c15.小数:小数由整数部分、小数部分和小数点组成。

  当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数,小数是十进制分数的一种特殊表现形式。

  16.小数基本性质:小数末尾添上0或去掉0,小数的大小不变,但计数单位变了。而且,小数点向左移动一位、两位、三位,原来的数就缩小10倍、100倍、1000倍,小数点向右移动一位、两位、三位,原来的数就扩大10倍、100倍、1000倍。

  17.小数的写法:整数部分写在小数点前,小数部分写在小数点后,中间用小数点隔开。18.小数的读法:

  一种是按照分数的读法来读.带小数的整数部分按整数读法读;小数部分按分数读法读,例如:0.38读作百分之三十八,14.56读作十四又百分之五十六。

  另一种读法,整数部分仍按整数的读法来读,小数点读作“点”,小数部分顺次读出每个数位上的数字,若几个零重复,不可只读一个0.例如:0.45读作零点四五;56.032读作五十六点零三二;1.0005读作一点零零零五。

  19.小数的比较:小数大小的比较方法与整数基本相同,即从高位起,依次把相同数位上的数加以比较。

  因此,比较两个小数的大小,先看它们的整数部分,整数部分大的那个数大;如果整数部分相同,十分位上的数大的那个数大;如果十分位上的数也相同,百分位上的数大的那个数大;20.小数的性质:

  (1)在小数的末尾添上零或去掉零,小数的大小数不变。

  (2)小数点移动会引起小数大小发生变化.把小数点分别向右移动一位、二位、三位…位,则小数的值分别扩大10倍、100倍、1000倍……

  如果把小数点分别向左移动一位、二位、三位…则小数的'值分别缩小到原来的十分之一、百分之一、千分之一…

  21.小数的近似值:保留小数:按要求在舍去部分最高位进行四舍五入运算。

  22.小数加法:小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。23.小数减法:小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。24.三角形:由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。25.生活中的三角形物品:雨伞、帽子、彩旗、灯罩、风帆、小亭子、雪山、楼顶、切成三角形的西瓜、火炬冰淇淋、热带鱼的边缘线、蝴蝶翅膀、火箭、竹笋、宝塔、金字塔、三角内裤、机器上用的三角铁、某些路标、长江三角洲、斜拉桥等。26.三角形中的线段:

  (1)中线:顶点与对边中点的连线,平分三角形的面积。

  (2)高:从三角形的一个顶点(三角形任意两条边的交点)向其对边所作的垂线段(顶点至对边垂足间的线段),叫做三角形的高。

  (3)角平分线:平分三角形的其中一个角的线段叫做三角形的角平分线,它到两边距离相等。(注:一个角的平分线是射线,平分线的所在直线是这个角的对称轴)(4)中位线:任意两边中点的连线。

  27.三角形为什么具有稳定性:任取三角形两条边,则两条边的非公共端点被第三条边连接∵第三条边不可伸缩或弯折∴两端点距离固定∴这两条边的夹角固定∵这两条边是任取的

  ∴三角形三个角都固定,进而将三角形固定∴三角形有稳定性

小学数学知识点总结13

  三年级数学年月日知识点

  1. 认识年、月、日。认识平年和闰年。

  2. 记忆大小月的方法

  3. 一年分四个季度:1、2、3月第一季度;4、5、6月第一季度;7、8、9月第一季度;10、11、12月第一季度;

  5. 普通记时法与24时记时法的转换。

  6. 简单的经过时间的计算方法。 认识年、月、日 1. 1年有12个月。

  2. 2.大月:有31天的月份是大月。大月有1月、3月、5月、7月、8月、10月、12月。

  3. 小月:有30天的月份是大月。小月有4月、6月、9月、11月。

  4.记忆大小月的方法:(1)拳头记忆法。(2)歌诀记忆法。(3)单、双数记忆法。

  5.一年分四个季度:1、2、3月第一季度;4、5、6月第一季度;7、8、9月第一季度;10、11、12月第一季度;

  平年和闰年

  1.平年:2月有28天的月份是平年,平年有365天。

  2.闰年:2月有29天的月份是平年,平年有365天。

  3.平年和闰年的判断方法:一般情况下,公历年份除以4没有余数的是闰年,公历年份是整百数的.,必须除以400没有余数才是闰年。

  三年级数学24时计时法部分知识点

  1、 会用24时计时法表示时刻;会把普通计时法和24时计时法进行互化。

  如:普通计时法 24时计时法 :上午9时→9时 ;晚上9时→21时(9+12=21) 普通计时法一定要加上“上午”、“下午”等前缀。

  2、【计算经过时间、开始时刻、结束时刻】 【认识时间与时刻的区别】

  ① 如:火车11:00出发,21:30到达,火车运行时间是(经过10小时30分钟),但这里不要写成(10:30)。 正确的列式格式为:21时30分-11时=10时30分,不能用电子表的形式相减。

  ② 再如:火车19时出发,第二天8时到达,火车运行时间是(13小时)。像这种跨越两天的,可以先计算第一天行驶了多长时间:24-19=5(时),再加上第二天行驶的8个小时:5+8=13(时);

  ③ 又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。

  3. 会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。

  三年级数学认识分米毫米千米知识点

  1、分米用字母dm表示,1分米写成1dm

  2、毫米用字母mm表示,1毫米写成1mm

  3、千米用字母km表示,1千米写成1km

  米、分米、厘米、毫米、千米之间的换算

  1、1厘米=10毫米或1cm=10mm

  2、1分米=10厘米或1dm=10cm

  3、1米=100厘米或1m=100cm

  4、1米=10分米或1m=10dm

  5、1千米=1000米或1km=1000m

  三年级数学吨的认识知识点

  (1)了解"吨"是比"千克"大很多的质量单位,知道1吨大约有多重,了解质量单位"吨"在生活中的应用。

  (2)掌握吨、千克、克之间的进率,能正确换算和计算,并能解决相关的实际问题。

  (3)能估计一些常见物品的质量,能根据具体情境选择恰当的质量单位。

  三年级数学千米和吨知识点

  1.知道千米和吨的适用范围

  2.千米和米之间的进率:1千米=1000米

  3.吨和千克之间的进率:1吨=1000千克

  认识千米 1.计量路程或测量公路、铁路、河流的长度,通常用千米作单位,千米可以用字母“km”。千米又叫公里。

  2.千米和米之间的进率:1千米=1000米

  3.千米和米之间的换算方法:把千米换算成米,就是在千米末尾添上3个0;把米换算成千米,就是在米数末尾去掉3个0。

  认识吨 1.称比较重的或大宗的物品,通常用吨作单位。吨可以用字母“t”表示。

  2.吨和千克之间的进率:1吨=1000千克

  3.吨和千克之间的换算方法:把吨换算成千克,就是在吨数末尾添上3个0;把千克换算成吨,就是在千克数末尾去掉3个0。

  练习三 1.千米和米之间的进率:1千米=1000米

  2.吨和千克之间的进率:1吨=1000千克

  3.用千米和吨的知识解决实际问题

小学数学知识点总结14

  认识计数单位“百”和“千”,知道相邻两个计数单位之间的十进关系。

  掌握万以内的数位顺序,会读、写万以内的数。

  知道万以内数的组成。

  会比较万以内数的大小,能用符号和词语描述万以内数的大小。

  理解并认识万以内的近似数。

  会口算百以内的两位数加、减两位数。

  会口算整百、整千数加、减法。

  会计算几百几十加、减几百几十,能结合实际进行估算。

  知道除法的含义和除法各部分名称以及乘法与除法的关系。

  熟练进行用乘法口诀求商。

  会从生活中发现和提出数学问题,能用所学知识(两步计算)加以解决。

  知道小括号的'作用,会使用小括号。

  会探索给定图形或数的排列中的简单规律。

  有发现和欣赏数学美、运用数学去创造美的意识。

  初步形成观察、分析和推理能力。

  认识质量单位克和千克。

  初步建立1克和1千克的质量观念,知道1千克=1000克。

  建立质量观念,培养学生估算物体质量的意识。

  今天就和大家就分享到这,祝各位同学学习愉快!

小学数学知识点总结15

  一、圆的特征

  1、圆是平面内封闭曲线围成的平面图形。

  2、圆的特征:外形美观,易滚动。

  3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

  圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

  半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

  直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

  同圆或等圆内直径是半径的2倍:d=2r或r=d÷2

  4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。

  5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

  有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

  有二条对称轴的图形:长方形

  有三条对称轴的图形:等边三角形

  有四条对称轴的图形:正方形

  有无条对称轴的图形:圆,圆环

  6、画圆

  (1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。

  二、圆的周长:

  围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

  1、圆的周长总是直径的三倍多一些。

  2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

  即:圆周率π=周长÷直径≈3.14

  所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr

  圆周率π是一个无限不循环小数,3.14是近似值。

  3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

  4、半圆周长=圆周长一半+直径=πr+d

  三、圆的面积s

  1、圆面积公式的推导

  如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

  圆的半径=长方形的`宽

  圆的周长的一半=长方形的长

  长方形面积=长×宽

  所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)

  S圆=πr×r=πr2

  2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。

  周长相同时,圆面积,利用这一特点,篮子、盘子做成圆形。

  3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

  4、环形面积=大圆–小圆=πR2-πr2

  扇形面积=πr2×n÷360(n表示扇形圆心角的度数)

  5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

  一个圆的半径增加a厘米,周长就增加2πa厘米。

  一个圆的直径增加b厘米,周长就增加πb厘米。

  6、任意一个正方形的内切圆即圆的直径是正方形的边长,它们的面积比是4∶π。

  7、常用数据

  π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

【小学数学知识点总结】相关文章:

小学数学知识点总结12-05

小学数学知识点总结12-12

小学数学知识点的总结09-08

小学的数学知识点总结07-31

小学数学知识点总结05-16

小学数学知识点总结06-30

小学数学知识点总结优秀05-18

小学数学必备知识点总结整理06-24

北京小学数学知识点总结08-12

小学数学知识点总结归纳09-27