- 数学必修四知识点总结 推荐度:
- 相关推荐
数学必修四知识点总结(实用)
总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以使我们更有效率,我想我们需要写一份总结了吧。你想知道总结怎么写吗?下面是小编精心整理的数学必修四知识点总结,希望能够帮助到大家。
数学必修四知识点总结1
正弦函数
主词条:正弦函数。
格式:sin(θ)。
作用:在直角三角形中,将大小为θ(单位为弧度)的角对边长度比斜边长度的比值求出,函数值为上述比的比值,也是csc(θ)的倒数。
函数图像:波形曲线。
值域:—1~1.
余弦函数
主词条:余弦函数。
格式:cos(θ)。
作用:在直角三角形中,将大小为(单位为弧度)的角邻边长度比斜边长度的比值求出,函数值为上述比的比值,也是sec(θ)的倒数。
函数图像:波形曲线。
值域:—1~1.
正切函数
主词条:正切函数。
格式:tan(θ)。
作用:在直角三角形中,将大小为θ(单位为弧度)的角对边长度比邻边长度的比值求出,函数值为上述比的比值,也是cot(θ)的倒数。
函数图像:右图平面直角坐标系反映。
值域:—∞~∞。
余切函数
主词条:余切函数。
格式:cot(θ)。
作用:在直角三角形中,将大小为θ(单位为弧度)的角邻边长度比对边长度的比值求出,函数值为上述比的比值,也是tan(θ)的倒数。
函数图像:右图平面直角坐标系反映。
值域:—∞~∞。
正割函数
主词条:正割函数。
格式:sec(θ)。
作用:在直角三角形中,将斜边长度比大小为θ(单位为弧度)的角邻边长度的比值求出,函数值为上述比的比值,也是cos(θ)的倒数。
函数图像:右图平面直角坐标系反映。
值域:≥1或≤—1.
余割函数
主词条:余割函数。
格式:csc(θ)。
作用:在直角三角形中,将斜边长度比大小为θ(单位为弧度)的角对边长度的比值求出,函数值为上述比的比值,也是sin(θ)的倒数。
函数图像:右图平面直角坐标系反映。
值域:≥1或≤—1.
学数学的用处
第一,实际生活中数学学得好可以帮助你在工作上解决工程类或财务类的技术问题。就大多数情况来看,不能解决技术问题的人不仅收入较差而且还要到基层去从事低等体力劳动,能解决技术问题的人就可以拿高工资在办公室当工程师或者财务人员。
第二,数学可以使你的大脑变得更加聪明,增加你思维的严谨性,另外,数学对你其它科目的学习也有很大作用。
第三,数学无处不在,工作学习中都用得着,例如日常逛街买东西都是和数学有关的,这时候才能体会到学习数学的好处。
数学函数的解析式与定义域知识点
1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。求函数的定义域一般有三种类型:
(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;
(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可。如:
①分式的分母不得为零;
②偶次方根的被开方数不小于零;
③对数函数的真数必须大于零;
④指数函数和对数函数的底数必须大于零且不等于1;
⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等。
应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集)。
(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可。
已知f(x)的`定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域。 2、求函数的解析式一般有四种情况
(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式。
(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法。比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可。
(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域。
(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(—x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式。
数学必修四知识点总结2
1.向量可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。
2.规定若线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。具有方向和长度的线段叫做有向线段。
3.向量的模:向量的大小,也就是向量的长度(或称模)。向量a的模记作|a|。
注:向量的模是非负实数,是可以比较大小的。因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。
4.单位向量:长度为一个单位(即模为1)的向量,叫做单位向量。与向量a同向,且长度为单位1的向量,叫做a方向上的单位向量,记作a0。
5.长度为0的向量叫做零向量,记作0。零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。
向量的计算
1.加法
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
2.减法
如果a、b是互为相反的向量,那么a=—b,b=—a,a+b=0.0的反向量为0
加减变换律:a+(—b)=a—b
3.数量积
定义:已知两个非零向量a,b。作OA=a,OB=b,则∠AOB称作向量a和向量b的夹角,记作θ并规定0≤θ≤π
向量的数量积的运算律
a·b=b·a(交换律)
(λa)·b=λ(a·b)(关于数乘法的.结合律)
(a+b)·c=a·c+b·c(分配律)
向量的数量积的性质
a·a=|a|的平方。
a⊥b〈=〉a·b=0。
|a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα|因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)
高中学好数学的方法是什么
数学需要沉下心去做,浮躁的人很难学好数学,踏踏实实做题才是硬道理。
数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。
数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。
数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。
数学题目不会做,原因之一就是例题没研究明白,所以数学书上的例题绝对不要放过。
数学函数的奇偶性知识点
1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数)。
正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=—f(x)或f(—x)=f(x)是定义域上的恒等式。(奇偶性是函数定义域上的整体性质)。
2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式。
数学必修四知识点总结3
【公式一:】
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
【公式二:】
设α为任意角,π+α的三角函数值与α的.三角函数值之间的关系:
sin(π+α)=—sinα
cos(π+α)=—cosα
tan(π+α)=tanα
cot(π+α)=cotα
【公式三:】
任意角α与—α的三角函数值之间的关系:
sin(—α)=—sinα
cos(—α)=cosα
tan(—α)=—tanα
cot(—α)=—cotα
【公式四:】
利用公式二和公式三可以得到π—α与α的三角函数值之间的关系:
sin(π—α)=sinα
cos(π—α)=—cosα
tan(π—α)=—tanα
cot(π—α)=—cotα
【公式五:】
利用公式一和公式三可以得到2π—α与α的三角函数值之间的关系:
sin(2π—α)=—sinα
cos(2π—α)=cosα
tan(2π—α)=—tanα
cot(2π—α)=—cotα
【公式六:】
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=—sinα
tan(π/2+α)=—cotα
cot(π/2+α)=—tanα
sin(π/2—α)=cosα
cos(π/2—α)=sinα
tan(π/2—α)=cotα
cot(π/2—α)=tanα
sin(3π/2+α)=—cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=—cotα
cot(3π/2+α)=—tanα
sin(3π/2—α)=—cosα
cos(3π/2—α)=—sinα
tan(3π/2—α)=cotα
cot(3π/2—α)=tanα
(以上k∈Z)
数学必修四知识点总结4
复数的概念:
形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。
复数的表示:
复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。
复数的几何意义:
(1)复平面、实轴、虚轴:
点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数
(2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即
这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。
这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。
复数的模:
复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=
虚数单位i:
(1)它的平方等于—1,即i2=—1;
(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立
(3)i与—1的关系:i就是—1的一个平方根,即方程x2=—1的一个根,方程x2=—1的另一个根是—i。
(4)i的周期性:i4n+1=i,i4n+2=—1,i4n+3=—i,i4n=1.
复数模的性质:
复数与实数、虚数、纯虚数及0的关系:
对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。
两个复数相等的定义:
如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di
a=c,b=d。特殊地,a,b∈R时,a+bi=0
a=0,b=0。
复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。
复数相等特别提醒:
一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。
解复数相等问题的方法步骤:
(1)把给的复数化成复数的标准形式;
(2)根据复数相等的充要条件解之。
数学学习技巧
1、做好预习:
单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。
2、认真听课:
听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的'解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。
3、认真解题:
课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。
4、及时纠错:
课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
数学中的合数是什么意思?
合数的概念
合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质dao数也不属于合数。最小的合数是4.其中,完全数与相亲数是以它为基础的。
什么是质数
质数又称素数,有无限个。一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数;否则称为合数。
根据算术基本定理,每一个比1大的整数,要么本身是一个质数,要么可以写成一系列质数的乘积;而且如果不考虑这些质数在乘积中的顺序,那么写出来的形式是唯一的。最小的质数是2.
质数和合数应用
1、质数与密码学:所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义。
2、质数与变速箱:在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。
数学必修四知识点总结5
向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量积运算律
a×b=—b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c。
注:向量没有除法,“向量AB/向量CD”是没有意义的。
数学必修四学习方法
首先:课前复习。就是上课前花两三分钟把书本本节课要学的内容看一遍。仅仅是看一遍,过一遍。这样上课老师讲自己不但可以跟上老师节奏还可以再次巩固。其余不要干其他多余的事。
其次:上课时候一定要专心听讲,如果觉得老师这里讲得都懂了的话可以自己翻书看后面的内容。做习题的.时候一定要一道一道往过做,不要越题做。因为对于课本来说这些都是基础,只有基础完全掌握后才能做难题。上课过程中第一次接触到的知识点概念等,一定一定要当堂背过。不然以后很难背过,不要妄想考前抱佛教再背
另外要把笔记记准确,知道自己需要记什么不需要记什么,憋一个劲地往书上搬。字不要求整齐,自己能看懂就行。课本资料书上有例题,多看多记方法。先看课本基础,在看资料书上着重的。例题的方法一定一定要理解,不要去背!接着下课再看笔记,只是略微巩固记住。
数学必修四学习技巧
掌握数学学习实践阶段:在高中数学学习过程中,我们需要使用正确的学习方法,以及科学合理的学习规则。先生著名的日本教育在米山国藏在他的数学精神、思想和方法,曾经说过,尤其是高阶段的数学学习数学,必须遵循“分层原则”和“循序渐进”的原则。与教学内容的第一周甚至是从基础开始,一周后的头几天,在教学难以提升。以及提升的困难进步一步一步,最好不要去追求所谓的“困难”除了(感兴趣),不利于解决问题方法掌握连续性。同时,根据时间和课程安排的长度适当的审查,只有这样才能记住和使用在长期学习数学知识,不要忘记前面的学习。
数学必修四知识点总结6
一】
a(1)=a,a(n)为公差为r的等差数列
通项公式:
a(n)=a(n—1)+r=a(n—2)+2r=......=a[n—(n—1)]+(n—1)r=a(1)+(n—1)r=a+(n—1)r。
可用归纳法证明。
n=1时,a(1)=a+(1—1)r=a。成立。
假设n=k时,等差数列的通项公式成立。a(k)=a+(k—1)r
则,n=k+1时,a(k+1)=a(k)+r=a+(k—1)r+r=a+[(k+1)—1]r。
通项公式也成立。
因此,由归纳法知,等差数列的通项公式是正确的。
求和公式:
S(n)=a(1)+a(2)+......+a(n)
=a+(a+r)+......+[a+(n—1)r]
=na+r[1+2+......+(n—1)]
=na+n(n—1)r/2
同样,可用归纳法证明求和公式。
a(1)=a,a(n)为公比为r(r不等于0)的等比数列
通项公式:
a(n)=a(n—1)r=a(n—2)r^2=......=a[n—(n—1)]r^(n—1)=a(1)r^(n—1)=ar^(n—1)。
可用归纳法证明等比数列的通项公式。
求和公式:
S(n)=a(1)+a(2)+......+a(n)
=a+ar+......+ar^(n—1)
=a[1+r+......+r^(n—1)]
r不等于1时,S(n)=a[1—r^n]/[1—r]
r=1时,S(n)=na。
同样,可用归纳法证明求和公式。
二】
符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。
【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤
⒈建立适当的坐标系,设出动点M的坐标;
⒉写出点M的集合;
⒊列出方程=0;
⒋化简方程为最简形式;
⒌检验。
二、求动点的轨迹方程的'常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
xx译法:求动点轨迹方程的一般步骤
①建系——建立适当的坐标系;
②设点——设轨迹上的任一点P(x,y);
③列式——列出动点p所满足的关系式;
④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明——证明所求方程即为符合条件的动点轨迹方程。
数学必修四知识点总结7
一、两个定理
1、共线向量定理:
两向量共线(平行)等价于两个向量满足数乘关系(与实数相乘的向量不是零向量),且数乘系数唯一。用坐标形式表示就是两向量共线则两向量坐标的“内积等于外积”。此定理可以用来证向量平行或者使用向两平行的条件。此定理的延伸是三点共线!三点共线可以向两个向量的等式转化:1.三个点中任意找两组点构成的两个向量共线,满足数乘关系;2.以同一个点为始点、三个点为终点构造三个向量,其中一个可由另外两个线性表示,且系数和为1.
2、平面向量基本定理:
平面内两个不共线的向量可以线性表示任何一个向量,且系数唯一。这两个不共线的向量构成一组基底,这两个向量叫基向量。此定理的作用有两个:1.可以统一题目中向量的形式;2.可以利用系数的唯一性求向量的系数(固定的算法模式)。
二、三种形式
平面向量有三种形式,字母形式、几何形式、坐标形式。字母形式要注意带箭头,多考虑几何形式画图解题,特别是能得到特殊的三角形和四边形的情况,向量的坐标和点的坐标不要混淆,向量的坐标是其终点坐标减始点坐标,特殊情况下,若始点在原点,则向量的坐标就是终点坐标。
选择合适的向量形式解决问题是解题的一个关键,优先考虑用几何形式画图做,然后是坐标形式,最后考虑字母形式的变形运算。
三、四种运算
加、减、数乘、数量积。前三种运算是线性运算,结果是向量(0乘以任何向量结果都是零向量,零向量乘以任何实数都是零向量);数量积不是线性运算,结果是实数(零向量乘以任何向量都是0)。线性运算符合所有的实数运算律,数量积不符合消去律和结合律。
向量运算也有三种形式:字母形式、几何形式和坐标形式。
加减法的字母形式注意首尾相接和始点重合。数量积的'字母形式公式很重要,要能熟练灵活的使用。
加减法的几何意义是平行四边形和三角形法则,数乘的几何意义是长度的伸缩和方向的共线,数量积的几何意义是一个向量的模乘以另一个向量在第一个向量方向上的射影的数量。向量的夹角用尖括号表示,是两向量始点重合或者终点重合时形成的角,首尾相接形成的角为向量夹角的补角。射影数量有两种求法:1.向量的模乘以夹角余弦;2.两向量数量积除以另一向量的模。
加减法的坐标形式是横纵坐标分别加减,数乘的坐标形式是实数乘以横、纵坐标,数量积的坐标形式是横坐标的乘积加纵坐标的乘积。
四、五个应用
求长度、求夹角、证垂直、证平行、向量和差积的模与模的和差积的关系。前三个应用是数量积的运算性质,证平行的数乘运算性质,零向量不能说和哪个向量方向相同或相反,规定零向量和任意向量都平行且都垂直;一个向量乘以自己再开方就是长度;两个向量数量积除以模的乘积就是夹角的余弦;两个向量满足数乘关系则必定共线(平行)。一个向量除以自己的模得到和自己同方向的单位向量,加符号是反方向的单位向量
数学函数的值域与最值知识点
1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:
(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。
(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。
(3)反函数法:利用函数f(x)与其反函数f—1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。
(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。
(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。
(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。
(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。
2、求函数的最值与值域的区别和联系
求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异。
如函数的值域是(0,16],最大值是16,无最小值。再如函数的值域是(—∞,—2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响。
3、函数的最值在实际问题中的应用
函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值。
高中学好数学的方法是什么
1.学数学要善于思考,自己想出来的答案远比别人讲出来的答案印象深刻。
2.课前要做好预习,这样上数学课时才能把不会的知识点更好的消化吸收掉。
3.数学公式一定要记熟,并且还要会推导,能举一反三。
4.学好数学最基础的就是把课本知识点及课后习题都掌握好。
5.数学80%的分数来源于基础知识,20%的分数属于难点,所以考120分并不难。
数学必修四知识点总结8
一
立体几何初步
(1)棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的.边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
二
向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量积运算律
a×b=—b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c。
注:向量没有除法,“向量AB/向量CD”是没有意义的。
必修四数学学习方法
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
要建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
必修四数学学习技巧
首先:课前复习。就是上课前花两三分钟把书本本节课要学的内容看一遍。仅仅是看一遍,过一遍。这样上课老师讲自己不但可以跟上老师节奏还可以再次巩固。其余不要干其他多余的事。
其次:上课时候一定要专心听讲,如果觉得老师这里讲得都懂了的话可以自己翻书看后面的内容。做习题的时候一定要一道一道往过做,不要越题做。因为对于课本来说这些都是基础,只有基础完全掌握后才能做难题。上课过程中第一次接触到的知识点概念等,一定一定要当堂背过。不然以后很难背过,不要妄想考前抱佛教再背
另外要把笔记记准确,知道自己需要记什么不需要记什么,憋一个劲地往书上搬。字不要求整齐,自己能看懂就行。课本资料书上有例题,多看多记方法。先看课本基础,在看资料书上着重的。例题的方法一定一定要理解,不要去背!接着下课再看笔记,只是略微巩固记住。
数学必修四知识点总结9
1.正弦、余弦公式的逆向思维
对于形如cos(α—β)cos(β)—sin(α—β)sin(β)这样的形式,运用逆向思维,化解为:
cos(α—β)cos(β)—sin(α—β)sin(β)=cos[(α—β)+β]=cos(α)
2.正切公式的'逆向思维。
比如,由tαn(α+β)=[tαn(α)+tαn(β)] / [1—tαn(α)tαn(β)]
可得:
tαn(α)+tαn(β)=tαn(α+β)[1—tαn(α)tαn(β)]
[1—tαn(α)tαn(β)]=[tαn(α)+tαn(β)]/ tαn(α+β)
tαn(α)tαn(β)tαn(α+β)=tαn(α+β)—tαn(α)—tαn(β)
3.二倍角公式的灵活转化
比如:1+sin2α=sin2(α)+cos2(α)+2sin(α)cos(α)
=[sin(α)+cos(α)]2
cos(2α)=2cos2(α)—1=1—2sin2(α)=cos2(α)—sin2(α)=[cos(α)+sin(α)][cos(α)—sin(α)]
cos2(α)=[1+cos(2α)]/2
sin2(α)=[1—cos(2α)]/2
1+cos(α)=2cos2(α/2)
1—cos(α)=2sin2(α/2)
sin(2α)/2sin(α)=2sin(α)cos(α)/2sin(α)=cos(α)
sin(2α)/2cos(α)=2sin(α)cos(α)/2cos(α)=sin(α)
4.两角和差正弦、余弦公式的相加减、相比。
比如:
sin(α+β)=sin(α)cos(β)+cos(α)sin(β)……1
sin(α—β)=sin(α)cos(β)—cos(α)sin(β)……2
1式+2式,得到
sin(α+β)+sin(α—β)=2sin(α)cos(β)
1式—2式,得到
sin(α+β)—sin(α—β)=2cos(α)sin(β)
1式比2式,得到
sin(α+β)/sin(α—β)=[sin(α)cos(β)+cos(α)sin(β)]/ [sin(α)cos(β)—cos(α)sin(β)]
=[tαn(α)+tαn(β)] / [tαn(α)—tαn(β)]
我们来看两道例题,增加印象。
1.已知cos(α)=1/7,cos(α—β)=13/14,且0<β<α<π/2,求β
本题中,α—β∈(0,π/2)
sin(α)=4√3/7 sin(α—β)=3√3/14
cos(β)=cos[α—(α—β)]=cos(α)cos(α—β)+sin(α)sin(α—β)
=1/2
β=π/3
2.已知3sin2(α)+2sin2(β)=1,3sin(2α)—2sin(2β)=0,且α,β都是锐角。求α+2β
由3sin2(α)+2sin2(β)=1得到:
1—2sin2(β)=cos(2β)=3sin2(α)
由3sin(2α)—2sin(2β)=0得到:
sin(2β)=3sin(2α)/2
cos(α+2β)=cos(α)cos(2β)—sin(α)sin(2β)
=cos(α)3sin2(α)—sin(α)3sin(2α)/2
=3sin2(α)cos(α)—3cos(α)sin2(α)
=0
加之0<α+2β<270o
α+2β=90o
【数学必修四知识点总结】相关文章:
数学必修四知识点总结10-30
数学必修三知识点总结07-18
数学高考必修知识点总结11-02
必修三数学知识点总结02-05
高一数学必修知识点总结08-30
高二数学必修2知识点总结07-17
高一数学必修知识点总结08-01
数学必修一函数知识点03-03
高中政治必修四知识点总结08-29