高中数学学习方法
高中数学学习方法1
一、高中学数学的技巧
1、重视课堂的学习效率
新知识的接受和数学能力的培养,主要是在课堂上进行,所以要特别重视课堂的学习效率,上课时要紧跟老师的思路,积极开展思维,预测下面的步骤,比较自己的解题思路与老师所讲的有哪些不同。课后要及时复习,不留疑点,对不懂的地方要及时请教老师或同学,切忌不懂将懂,或将不懂的地方跳过。课后还要注重基础知识的学习和基本技能的培养,要多记公式、定理,因为它们是学好数学的关键和必备条件。
2、多做习题,养成良好的解题习惯
要想学好数学,多做题是不可避免的。当然,多做题并不等于搞题海战术。做的题目要有代表性,不能胡子眉毛一把抓,碰到哪道题就做哪道题。有些题适合我们做,而有些题却超出了我们的能力范围,做这些题目只能是浪费我们宝贵的时间,不会达到任何效果。做的题要难易适中,通过做些有代表的题目,要力争能举一反三。数学是一门逻辑性很强的学科,需要缜密的思维,解题要有条理,在做题的过程中学会熟练运用正确的解题方法,掌握一些基本题型的解题规律。只有平时大量的训练,见多了、做多了,自然就熟能生巧,考试的时候就会应付自如,不至于乱了阵脚。
3、调整好心态,正确对待平时的考试
大家都知道,数学是个逻辑性极强的学科,要求有清醒的头脑,数学运算过程中的每个解题步骤都很重要,漏掉了哪个步骤都是不行的。因此,在做数学题的时候,保持一个平静的心态是很重要。这就要求我们平时要学会善于把握自己的情绪,要能及时地调整好自己的心态,戒骄戒躁,千万不能一遇到解不出来的题目就焦躁不安。焦躁是学习数学的大忌。
二、高中数学的学习方法
1、抓住重点听讲
上课前我是一定要预习的,有时间就看的仔细些,老师要讲什么内容,有什么定义、定理和公式我先都记住,再看一些例题去理解定义和定理的应用,脑子里会形成那些我明白了,那些不理解,记在本子上。上课的时候,老师嘴一张开我就知道老师要讲什么了,会的我就看自己的书,不会的我就仔细听讲。
我善于抓住重点去听讲,记的时候,我看其他同学是什么都记,我不是,凡是书上有的内容我从不记,比如定义、定理和公式和书上的例题。我只记一些书上没有的内容,我不会的内容,还有老师说这是重点或难点的内容。我经常在书上做一些纪录,我的书看完是满书涂鸦,不适合别人看了,以后自己一翻书,我就会从我的纪录上回忆这一节的全部内容,一翻书就回忆,经常翻就记的很牢了。
2、多看辅导书
老师布置的作业我肯定都要做完,但我不会满足于老师布置的作业,我还要看一些辅导书籍,做一些辅导书籍上的作业,直到我能理解定义、定理和公式的含义,一道题尽量用多种办法去解题,做到举一反三。我经常买和课程有关的辅导书籍看,每一门课程我都有好几本相关的辅导书籍。
3、定期整理归纳
每学完一章的内容,我都要进行小结。把这章的内容归纳一下,把定义、定理、公式和这个定义、定理、公式有代表行的练习题写出来,最后就是用几句话把这一章的内容概括一下,目的是方便记忆。我写在一张纸上,放在口袋里,随时会拿出这张纸来看一下。我一般不看完,只看前面几个字,然后去想后面的内容,实在想不出来才再看一下的。考试前每一科目我都是把内容归纳后,写在纸上放在口袋里,跑到没人的大树底下,一会看一下归纳的纸条,背诵内容和例题。
高中数学学习方法2
高中数学学习方法
曾经是初中数学学习的佼佼者,然而由于不适应高中数学的教学,相当多的学生数学成绩不理想,出现严重的学习障碍,甚至对学习失去信心,导致两极分化。然而,值得庆幸的是,只要高一开始阶段我们发现及时,学生感悟及时,方法调整及时,一切都还来得及,数学依然可以是你们的最爱。
一、首先我们分析高中数学的特点
(1)教材内容方面:高中数学教材,较多研究的是变量和集合,不但注重定量计算,且需作定性研究。一句话:内容多,抽象性、理论性强。
(2)教学方法方面:高中教师在处理高中教材时却没有充裕的时间去反复强调教材内容,他们在教学中,不仅要对教材中的概念、公式、定理和法则加以认真讲解,还要重视学生各种能力的培养,对习惯于"依样画葫芦"缺乏"举一反三"能力的高一学生,显然无法接受。
(3)学习方法方面:进入高中后,则要求学生勤于思考、勇于钻研、善于触类旁通、举一反三、归纳探索规律。
(4)课程要求方面:由于高中数学内容难度增大,数学知识的应用增加,要求学生会使用文字、符号和图形等数学语言表达问题进行交流,对能力提出更高的要求。
鉴于上述特点,我有一种非常强烈的愿望,希望通过我对数学的感受,能够引领高一学生走出数学学习的低谷,从而翻开数学学习全新的一页。因此,我有些方法建议,送给所有喜欢数学的学生。
二、高一学生学习数学方法建议
其实,良好的数学学习方法不是一朝一夕就可以随意形成的,这是一个非常庞大的系统问题,他不仅包括对数学学科的态度、课堂听课的效率、课后知识的巩固、课外知识的补充以及阶段学习效率的评价等。由于篇幅有限,我仅对本人认为最为重要的"课堂"这一环节谈谈自己的看法。
众所周知,教师教学的主要环境是课堂,教师必定会将自己对所教课程的全部精华放在课堂上倾吐给学生。因此,作为学生,抓住课堂,必将事半功倍。
(1)主动和数学老师交朋友
我之所以把这条放在首位,因为它确实对数学学习具有举足轻重的作用。人的感情具有传递性的,与老师的距离近了,也就离数学更近了。如何与老师成为朋友,很简单,经常在课堂上提问或者经常跑去请教老师,你们自然就是朋友了。
(2)必须提高听课的效率
听课的效率如何,决定着学习的基本状况。提高听课效率应注意以下几个方面:
1、科学预习
预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习后将课本的例题及老师要讲授的习题提前完成,还可以培养自己的自学能力,与老师的方法进行比较,可以发现更多的方法与技巧。总之,这样会使你的听课更加有的放矢,你会知道哪些该重点听,哪些该重点记。
2、科学听课
听课的过程不是一个被动参预的过程,要全身心地投入课堂学习,耳到、眼到、心到、口到、手到。还要想在老师前面,不断思考:面对这个问题我会怎么想?当老师讲解时,又要思考:老师为什么这样想?这里用了什么思想方法?这样做的目的是什么?这个题有没有更好的方法?问题多了,思路自然就开阔了。
3、科学笔记
常常有学生问我,听数学课要不要记笔记,我毫不犹豫地回答:当然要。不仅要记,而且要记好。当然,什么都记就不是记笔记了,应该针对自身听课的情况选择性记录。
记问题--将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。
记疑点--对老师在课堂上讲的内容有疑问应及时记下,这类疑点,有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后与老师商榷。
记方法--勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。
记总结--注意记住老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找存在问题、找到规律,融会贯通课堂内容都很有作用。
4、必须用好你的数学笔记
记下的笔记只停留在纸上,要成为你自己的东西,必须用心去独立体会笔记里的每一个典型例题,每一个经典方法,每一个想法思路,完全理解并且会熟练运用才是根本。
当然,课堂的问题解决了,其他的问题也就迎刃而解了,所以,高一的学生们,请不要轻易讨厌数学,因为多半是由于你不了解数学,其实它很善良,也很有魅力,试着用心去学,你一定会成功。
高中数学学习方法3
一、培养“数形”结合的能力
“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小两个属性,就交给了教学去研究了。初中数学两个分支——代数和几何,代数是研究“数”的,几何是研究“形”的。但是研究代数要借助“形”,研究几何要借助“数”,“数形整合”是一种趋势,越学下去,“数”与“形”越密不可分。到了高中就出现了专门用代数方法研究几何问题的一门课,叫做“解析几何”。在初二建立平面直角坐标系后,研究函数的问题就离不开图像了。往往借助图像能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾上了一点边,就应该根据题意画出草图来分析一番。这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人就会慢慢养成一种“数形结合”的好习惯。
二、培养“方程”的思维能力
数学是研究事物的空间形式和数量关系的,最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关的等式:速度?时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、分式方程,到了高中我们还将学习指数方程、对数方程、线性方程、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化一元一次方程或是一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际运用,都需要建立方程,通过解方程来求出结果。因此同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。所谓的“议程”思维就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
学数学就像吃“牛轧花生糖”
怎么学?其实,这是一个吃“牛轧花生糖”的过程。我想借用这5个字“牛、轧(同音“扎”,即扎实)、花生(谐音“化生”,即解题中的“化生为熟”策略)糖(甜蜜)”,来谈谈我对大家的建议。
提起“牛”,人们会说牛气冲天、老黄牛、牛劲。是的,我们学习就是要一股牛气,要有一股初生牛犊的精神,要有牛气冲天的干劲,要不畏难、不怕苦,要勤于思考、敢于实践,要把自卑一扫而光,代之而起的是高涨而持续的学习热情。
牛在紧要关头不仅有冲劲,在平时耕田拉车中还特有韧劲,我们特别需要能长久维持的韧劲,它是我们的必要条件,有了这股韧劲,就能克服一切困难,集中精力,发奋读书,即使身体小有不适,也能尽量坚持学习,这是对自己意志的考验。
“轧”音同“扎”,寓意是学习要扎实。数学学习的扎实表现在:
(1)不满足于听懂、看懂,关键要能准确地书写表达出来,还要能举一反三,否则,没有真懂。
(2)运算要既快又准。速度慢了不行,但算错了更不行!
要做到这两条,必须在上认真听讲、用心思考、勤于演算、善于笔记。在课后还要通过一定数量模仿性练习、提高性练习等高质量作业才能牢固掌握,做作业不互相对答案,不抄袭,遇到不懂问题可以相互讨论,但懂了以后自己再独立做。还要自觉学会归纳解题成功的经验和总结失败的教训,做到吃一堑,长一智。
花生的果实生长在地下,默默地被大地滋润着,直到成熟才离开土地,营养价值极高。滋润着成长的是国家以及你们的父母和。
“花生”的“生”单独字面有陌生、生疏的意思,“花”有相间的意思 高中化学,此处借用“花生”是想说在学习过程中会时常出现一些新的问题和困难,这需要我们正确的态度去对待,是强调基础差、问题难,还是知难而进,用心思考,不耻下问,是对每个同学学习毅力的考验。
“花生”的谐音是“化生”,借指数学中常用的——化生为熟。这是数学学习中解决问题的一条重要途径,是学会分析问题和解决问题的重要。
糖是大家喜欢的食品,它给我们辛苦的学习带来一丝甜意,我希望大家在繁重的学习间隙,可以唱支歌、跳曲舞来调节生活,来体验学习的甜蜜,预示同学们三年生活有一个甜美的结果。但是大家知道,葡萄在成熟之前是不甜的,这预示着,在我们最后几个月的学习中可能会有很多感触,那种时而忽然开朗,眼前一片光明,时而百思不解,眼前一片黑暗,那种纠结、烦躁、甚至愤怒,没有亲身经历的人是难以体会的!这样的经历是一个人成长、成熟所必须经历的,我们只能面对,没有逃避的余地,这或许是“先苦后甜”的深刻含义吧。
吃了今天的“牛轧花生糖”,我相信今后你们学习信心更大,克服困难的意志更坚强,解决问题方法更多,成绩提高得更快,明天的日子会更甜!
高中数学学习方法4
高中数学学习方法:其实就是学习解题
高中数学是应用性很强的学科,学习数学就是学习解题。搞题海战术的方式、方法固然是不对的,但离开解题来学习数学同样也是错误的。其中的关键在于对待题目的态度和处理解题的方式上。
1、首先是精选题目,做到少而精。
只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。
2、其次是分析题目。
解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的.已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。
3、最后,题目总结。
解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:
①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。
②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。
③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。
④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。
【摘要】“高中数学多边形内角和公式”数学公式是解题的要点,要灵活运用,希望下面公式为大家带来帮助:
设多边形的边数为N
则其内角和=(N-2)*180°
因为N个顶点的N个外角和N个内角的和
=N*180°
(每个顶点的一个外角和相邻的内角互补)
所以N边形的外角和
=N*180°-(N-2)*180°
=N*180°-N*180°+360°
=360°
即N边形的外角和等于360°
设多边形的边数为N
则其外角和=360°
因为N个顶点的N个外角和N个内角的和
=N*180°
(每个顶点的一个外角和相邻的内角互补)
所以N边形的内角和
=N*180°-360°
=N*180°-2*180°
=(N-2)*180°
即N边形的内角和等于(N-2)*180°
如何学好数学
首先和敏捷对于来说固然重要,但良好的可以把效果提高几倍,这是先天因素不可比拟的。学好首先要过的是关。任何事情都有一个由量变到质变的循序渐进的积累过程。
一.。不等于浏览。要深入了解内容,找出重点,难点,疑点,经过思考,标出不懂的,有益于抓住重点,还可以培养自学,有时间还可以超前学习。
二.听讲。核心在。1。以听为主,兼顾记录。2。注重过程,轻结论。
3.有重点。4。提高听课。
三.。像演电影一样把课堂,整理笔记,
四.多做练习。1。晚上吃饭后,坐到书桌时,看数学最适合,2。做一道数学题,每一步都要多问个别为什么,不能只满足于课堂上的灌输式传授和书本上的简单讲述,要想提高必须要一步一步推 高中历史,一步一步想,每个过程都必不可少,3。不要粗心大意,4。做完每一道题,要想想为什么会想到这样做,建立一种条件发射,关键在于每做一道题要从中得到东西,错在哪,5。解题都有固定的套路。6还有大胆的夸奖自己,那是树立信心的关键时刻,
五.总结。1。要将所学的知识变成知识网,从大主干到分枝,清晰地深存在脑中,新题想到老题,从而一通百通。2。建立错误集,错误多半会错上两次,在有意识改正的情况下,还有可能错下去,最有效的应该是会正确地做这道题,并在下次遇到同样情况时候有注意的意识。3。周末再将一周做的题回头看一番,提出每道题的思路方法。4有问题一定要问。
六.考前复习,1。前2周就要开始复习,做到心中有数,否则会影响发挥,再做一遍以前的错题是十分必要的,据说有一个同学平时只有一百零几,离只有一个月,把以前错题从头做一遍,最后他数学居然得了147分。2。要重视基础,
另外,听老师的话,勤学苦练不可少,没有捷径,要乐观,有毅力,要有决心,还要有耐心,学数学是一个很长的过程,你的努力于回报往往不能那么尽如人意的成正比,甚至会有下坡路的趋势,但只要坚持下去,那条成绩线会抬起头来,一定能看到光明。
《希腊文集》中的方程问题
《希腊文集》是一本用诗歌写成的问题集,主要是六韵脚诗。荷马著名的长诗《伊丽亚特》和《奥德赛》就是用这种诗体写成的。
《希腊文集》中有一道关于毕达哥拉斯的问题。毕达哥拉斯是古希腊著名数学家,生活在公元前六世纪。问题是:一个人问:“尊敬的毕达哥拉斯,请告诉我,有多少学生在你的学校里听你讲课?”毕达哥拉斯回答说:“一共有这么多学生在听课,其中 在学习数学, 学习音乐, 沉默无言,此外,还有3名妇女。”
我们用现代方法来解:设听课的学生有x人,根据题目条件可列出方程
这是一个一元一次方程。
移项,得
答:毕达哥拉斯有28名学生听课。
《希腊文集》中还有一些用童话形式写成的数学题。比如“驴和骡子驮货物”这道题,就曾经被大数学家欧拉改编过。题目是这样的:
“驴和骡子驮着货物并排走在路上。驴不住地往地埋怨自己驮的货物太重,压得受不了。骡子对驴说:‘你发什么牢骚啊!我驮得的货物比你重。假若你的货物给我一口袋,我驮的货就比你驮的重一倍,而我若给你一口袋,咱俩驮和的才一样多。’问驴和骡子各驮几口袋货物?”
这个问题可以用方程组来解:
设驴驮x口袋,骡子驮y口袋。则驴给骡子一口袋后,驴还剩x-1,骡子成了y+1,这时骡子驮的是驴的二倍,所以有
2(x-1)=y+1 (1)
又因为骡子给驴一口袋后,骡子还剩下y-1,驴成了x+1,此时骡子和驴驮的相等,有
x+1=y-1 (2)
(1)与(2)联立,有
这是一个二元一次议程组。
(1)-(2)得 x-3=2,
x=5 (3)
将(3)代入(2),得y=7。
答:驴原来驮5口袋,骡子原来驮7口袋。
《希腊文集》有一道名的题目“爱神的烦恼”。这里有许多神的名字,先介绍一下:爱罗斯是希腊神话中的爱神,吉波莉达是赛浦路斯岛的守护神。9位文艺女神中,叶芙特尔波管简乐,爱拉托管爱情诗,达利娅管吉剧,特希霍拉管舞蹈,美利波美娜管悲剧,克里奥管历史,波利尼娅管颂歌,乌拉尼娅管天文,卡利奥帕管史诗。
这道题也是用诗歌形式写在的:
爱罗斯在路旁哭泣,
泪水一滴接一滴。
吉波莉达向前问道:波利尼
“是什么事情使你如此伤悲?
我可能够帮助你?”
爱罗斯回答道:
“九位文艺女神
不知来自何方
把我从赫尔康山采回的苹果,
几乎一扫而光,
叶芙特尔波飞快地抢走十二分之一,
爱拉托抢得更多——
七个苹果中拿走一个。
八分之一被达利娅抢走,
比这多一倍的苹果落入特希霍拉之手。
美利波美娜最是客气,
只取走二十分之一。
可又来了克里奥,
她的收获比这多四倍。
还有三位女神,
个个都不空手,
30个归波利尼娅,
120个归乌拉尼娅,
300个归卡利奥帕。
我,可怜的爱罗斯。
爱罗斯原有多少个苹果?还剩下50个苹果。”
设爱罗斯原来有x个苹果,则6位文艺女神抢走的苹果分别是 。
可列出方程
答:爱罗斯原来有苹果3360个。
选自《中学生数学》20xx年5月下
20xx高考数学复习三步曲
编者按:小编为大家收集了“20xx高考数学复习三步曲”,供大家参考,希望对大家有所帮助!
今年高考文理科的数学试卷总体难度不大,为师生所接受。文科试卷难易程度适中,尤其是填空题和选择题难度不大,解答题难易程度和试题坡度安排都比较合理,有利于考生的发挥,也有利于指导以后的学习。
理科试卷容易题、中等题和难题比例恰当,注重逻辑思维能力和表达能力(运用数学符号)以及数形结合能力的考查,部分试题新而不难,开放题有所体现,把能力的考查落到实处。但我个人认为,今年试卷对高中数学的主干知识的核心内容考查不到位,但不等于我们今后可以完全不重视。
抓基础:不变应万变
把基础知识和基本技能落到实处。唯有如此才能以不变应万变。比如,文科第22题是一道经典题型,考查圆锥曲线上一点到定点距离,既考老师又考学生。所谓考老师是说这样的题型你讲过没有,是怎么讲的?学生的典型错误(以定点为圆心作一个与椭圆相切的圆,再利用判别式等于0)是怎么纠正?正确解法(转化为二次函数在某个区间上的最值)是怎么想到的?只有经过这样的教学环节,学生才能真正理解。所谓考学生是说你自己做错了,老师重点讲评了的经典问题,你掌握了没有?掌握的标准是能否顺利解答相应的变式问题。由于第(3)含有参数,需要分类讨论,能有效甄别考生的思维水平和运算能力。本题以椭圆(解析几何重点内容之一)为载体,考查把几何问题转化为代数问题的能力(这是解析几何的核心思想),以及含参数的二次函数求最值问题(也是代数中的重点和难点),一举多得。
当然,可能会有人认为这道题形式不新,其实,要求考题全新既无必要,也不可能,只要有利于高校选拔和中学教学就好,不必过分求新、求异。
理科的第22题相对较难,不少同学反映不好表述。若能从集合的包含关系这个角度考虑,则容易表述,部分考生是直接对两个数列进行分类,由于要用到一些多数学生不熟悉的整除知识,因而感到困难,无法下手。这就体现基础知识和基本技能的重要性。
尽管今年理科试卷在知识点分布上有些不尽如人意,但复习不能受此影响,仍然要全面、扎实复习,不能留下知识点的死角,相应的技能、技巧要牢固掌握,思想方法都要总结到位,这样才能“不管风吹浪打,胜似闲庭信步”。
破难题:提升应对力
如何应对“题梗阻”?考试中遇到不会做的题目很正常,有些同学会因此影响临场发挥。考生进考场就像运动员进运动场,心理素质很重要,把心理辅导和答题技巧融于学习之中。在高三复习过程中,不仅要讲数学知识,同时还要训练学生的心理素质和培养学生的答题技巧,这样才能使学生在考场上应付裕如,出色发挥,考出好成绩。
理科的22题第(2)卡住不少考生,耽误时间还影响心情,以致第(3)和后面第23题来不及或无心去做,其实,做第(3)题用不到第(2)的结论。而第23题是新编的开放性问题,首先要静心才能读懂题目,而读懂题目至少第(1)、(2)两题不难。要做到这些并不容易,不是临考前“先易后难”一句话学生就能做到,需要在平时教学过程中结合具体问题,训练学生的心理素质,提高其在解题过程中遇到困难时的应变能力,掌握应变策略,才能在考场上“敢于放弃”,从容跳过不会做的题或在解答题中跳步解答,把自己能做的题目先做对,把应得的分得到,这样考试总是成功的,无论分数高低。
为何时间与成绩不成正比?高三数学就是大量解题,有些重点中学的优秀学生的高考成绩甚至不比高二时考分高,岂不是白学?其实,这是误解。数学讲究逻辑,问题从哪里来(已知),到哪里去(求证),中间有哪些沟沟坎坎(思维障碍),怎么克服(怎样进行等价转化),不仅是照葫芦画瓢的操作性(当然也是必要的)训练,更重要的是以数学知识为载体,让学生学会思考问题的方式方法,还要在解题后对问题作归纳总结,找出规律,有时还要把问题作适当推广,把学生的逻辑思维引到辩证思维。这样经过一年的高三数学学习,学生收获的不仅是分数,还有对人终生受用的思维品质的提高。
重方法:培养好品质
有些同学做了许多题,就是成绩提高不见提高,自己和家长都很纳闷。其实学习数学关键是要掌握方法,同时还要培养敢于做难题、新题的胆量和毅力。重复性操作的题目做再多,意义也不大。对待难题的态度是培养学生意志品质的好时机,不能轻易错过(当然也要因人而异)。有些同学往往认为只要弄懂思路,不必解到底。其实,这样的同学往往眼高手低,会而不对,考试成绩忽高忽低,原因在于某些细节处理不当,造成“一失足成千古恨”,事后以粗心搪塞过去。这就需要老师对学生深入了解,结合具体问题给予悉心指导,帮助学生找出真实原因,并制定改正错误的办法,这一过程表面上是帮助学生学会解题,实际上对学生意志品质的培养也就潜移默化地得到了落实。
我们有理由相信,把解题和人的素质培养有机结合的高三数学教学,不仅能提高学生的解题能力,还能促使他们健康成长,让我们一起努力!
以上就是为大家提供的“20xx高考数学复习三步曲”希望能对考生产生帮助,更多资料请咨询中考频道。
生物数学概论
生物数学是生物学与数学之间的边缘学科。它以数学方法研究和解决生物学问题,并对与生物学有关的数学方法进行理论研究。
生物数学的分支学科较多,从生物学的应用去划分,有数量分类学、数量遗传学、数量生态学、数量生理学和生物力学等;从研究使用的数学方法划分,又可分为生物统计学、生物信息论、生物系统论、生物控制论和生物方程等分支。这些分支与前者不同,它们没有明确的生物学研究对象,只研究那些涉及生物学应用有关的数学方法和理论。
生物数学具有丰富的数学理论基础,包括集合论、概率论、统计数学、对策论、微积分、微分方程、线性代数、矩阵论和拓扑学,还包括一些近代数学分支,如信息论、图论、控制论、系统论和模糊数学等。
由于生命现象复杂,从生物学中提出的数学问题往往十分复杂,需要进行大量计算工作。因此,计算机是研究和解决生物学问题的重要工具。然而就整个学科的内容而论,生物数学需要解决和研究的本质方面是生物学问题,数学和电脑仅仅是解决问题的工具和手段。因此,生物数学与其他生物边缘学科一样通常被归属于生物学而不属于数学。
生命现象数量化的方法,就是以数量关系描述生命现象。数量化是利用数学工具研究生物学的前提。生物表现性状的数值表示是数量化的一个方面。生物内在的或外表的,个体的或群体的,器官的或细胞的,直到分子水平的各种表现性状,依据性状本身的生物学意义,用适当的数值予以描述。
数量化的实质就是要建立一个集合函数,以函数值来描述有关集合。传统的集合概念认为一个元素属于某集合,非此即彼、界限分明。可是生物界存在着大量界限不明确的模糊现象,而集合概念的明确性不能贴切地描述这些模糊现象,给生命现象的数量化带来困难。1965年扎德提出模糊集合概念,模糊集合适合于描述生物学中许多模糊现象,为生命现象的数量化提供了新的数学工具。以模糊集合为基础的模糊数学已广泛应用于生物数学。
数学模型是能够表现和描述真实世界某些现象、特征和状况的数学系统。数学模型能定量地描述生命物质运动的过程,一个复杂的生物学问题借助数学模型能转变成一个数学问题,通过对数学模型的逻辑推理、求解和运算,就能够获得客观事物的有关结论,达到对生命现象进行研究的目的。
比如描述生物种群增长的费尔许尔斯特-珀尔方程,就能够比较正确的表示种群增长的规律;通过描述捕食与被捕食两个种群相克关系的洛特卡-沃尔泰拉方程,从理论上说明:农药的滥用,在毒杀害虫的同时也杀死了害虫的天敌,从而常常导致害虫更猖獗地发生等。
还有一类更一般的方程类型,称为反应扩散方程的数学模型在生物学中广为应用,它与生理学、生态学、群体遗传学、医学中的流行病学和药理学等研究有较密切的关系。60年代,普里戈任提出著名的耗散结构理论,以新的观点解释生命现象和生物进化原理,其数学基础亦与反应扩散方程有关。
由于那些片面的、孤立的、机械的研究方法不能完全满足生物学的需要,因此,在非生命科学中发展起来的数学,在被利用到生物学的研究领域时就需要从事物的多方面,在相互联系的水平上进行全面的研究,需要综合分析的数学方法。
多元分析就是为适应生物学等多元复杂问题的需要、在统计学中分化出来的一个分支领域,它是从统计学的角度进行综合分析的数学方法。多元统计的各种矩阵运算,体现多种生物实体与多个性状指标的结合,在相互联系的水平上,综合统计出生命活动的特点和规律性。
生物数学中常用的多元分析方法有回归分析、判别分析、聚类分析、主成分分析和典范分析等。生物学家常常把多种方法结合使用,以期达到更好的综合分析效果。
多元分析不仅对生物学的理论研究有意义,而且由于原始数据直接来自生产实践和科学实验,有很大的实用价值。在农、林业生产中,对品种鉴别、系统分类、情况预测、生产规划以及生态条件的分析等,都可应用多元分析方法。医学方面的应用,多元分析与电脑的结合已经实现对疾病的诊断,帮助医生分析病情,提出治疗方案。
系统论和控制论是以系统和控制的观点,进行综合分析的数学方法。系统论和控制论的方法没有把那些次要的因素忽略,也没有孤立地看待每一个特性,而是通过状态方程把错综复杂的关系都结合在一起,在综合的水平上进行全面分析。对系统的综合分析也可以就系统的可控性、可观测性和稳定性作出判断,更进一步揭示该系统生命活动的特征。
在系统和控制理论中,综合分析的特点还表现在把输出和状态的变化反馈对系统的影响,即反馈关系也考虑在内。生命活动普遍存在反馈现象,许多生命过程在反馈条件的制约下达到平衡,生命得以维持和延续。对系统的控制常常靠反馈关系来实现。
生命现象常常以大量、重复的形式出现,又受到多种外界环境和内在因素的随机干扰。因此概率论和统计学是研究生物学经常使用的方法。生物统计学是生物数学发展最早的一个分支,各种统计分析方法已经成为生物学研究工作和生产实践的常规手段。
概率与统计方法的应用还表现在随机数学模型的研究中。原来数学模型可分为确定模型和随机模型两大类如果模型中的变量由模型完全确定,这是确定模型;与之相反,变量出现随机性变化不能完全确定,称为随机模型。又根据模型中时间和状态变量取值的连续或离散性,有连续模型和离散模型之分。前述几个微分方程形式的模型都是连续的、确定的数学模型。这种模型不能描述带有随机性的生命现象,它的应用受到限制。因此随机模型成为生物数学不可缺少的部分。
60年代末,法国数学家托姆从拓扑学提出一种几何模型,能够描绘多维不连续现象,他的理论称为突变理论。生物学中许多处于飞跃的、临界状态的不连续现象,都能找到相应的跃变类型给予定性的解释。跃变论弥补了连续数学方法的不足之处,现在已成功地应用于生理学、生态学、心理学和组织胚胎学。对神经心理学的研究甚至已经指导医生应用于某些疾病的临床治疗。
继托姆之后,跃变论不断地发展。例如塞曼又提出初级波和二级波的新理论。跃变理论的新发展对生物群落的分布、传染疾病的蔓延、胚胎的发育等生物学问题赋予新的理解。
上述各种生物数学方法的应用,对生物学产生重大影响。20世纪50年代以来,生物学突飞猛进地发展,多种学科向生物学渗透,从不同角度展现生命物质运动的矛盾,数学以定量的形式把这些矛盾的实质体现出来。从而能够使用数学工具进行分析;能够输入电脑进行精确的运算;还能把来自名方面的因素联系在一起,通过综合分析阐明生命活动的机制。
总之,数学的介入把生物学的研究从定性的、描述性的水平提高到定量的、精确的、探索规律的高水平。生物数学在农业、林业、医学,环境科学、社会科学和人口控制等方面的应用,已经成为人类从事生产实践的手段。
数学在生物学中的应用,也促使数学向前发展。实际上,系统论、控制论和模糊数学的产生以及统计数学中多元统计的兴起都与生物学的应用有关。从生物数学中提出了许多数学问题,萌发出许多数学发展的生长点,正吸引着许多数学家从事研究。它说明,数学的应用从非生命转向有生命是一次深刻的转变,在生命科学的推动下,数学将获得巨大发展。
当今的生物数学仍处于探索和发展阶段,生物数学的许多方法和理论还很不完善,它的应用虽然取得某些成功,但仍是低水平的、粗略的、甚至是勉强的。许多更复杂的生物学问题至今未能找到相应的数学方法进行研究。因此,生物数学还要从生物学的需要和特点,探求新方法、新手段和新的理论体系,还有待发展和完善。
20xx年高考数学命题预测之立体几何
【编者按】近几年高考立体几何试题以基础题和中档题为主,热点问题主要有证明点线面的关系,如点共线、线共点、线共面问题;证明空间线面平行、垂直关系;求空间的角和距离;利用空间向量,将空间中的性质及位置关系的判定与向量运算相结合,使几何问题代数化等等。考查的重点是点线面的位置关系及空间距离和空间角,突出空间想象能力,侧重于空间线面位置关系的定性与定量考查,算中有证。其中选择、填空题注重几何符号语言、文字语言、图形语言三种语言的相互转化,考查学生对图形的识别、理解和加工能力;解答题则一般将线面集中于一个几何体中,即以一个多面体为依托,设置几个小问,设问形式以证明或计算为主。
20xx年高考中立体几何命题有如下特点:
1.线面位置关系突出平行和垂直,将侧重于垂直关系。
2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现。
3.多面体及简单多面体的概念、性质多在选择题,填空题出现。
4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点。
此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题
高中数学学习方法5
一、知识特点的差异与变化
数学语言在抽象程度上突变;不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很难理解.确实,初高中的数学语言有着显著的区别.初中的数学主要是以形象、通俗的语言方式进行表达.而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等.
思维方法向理性层次跃迁;高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同.初中阶段,很多老师为学生将各种题建立了统一的思维模式,分别确定了各自的思维套路.因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,正如上节所述,数学语言的抽象化对思维能力提出了更高要求.当然,能力的发展是渐进的,不是一朝一夕的事,这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降.高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证形思维.
知识内容剧增;初中数学知识少、浅、难度容易、知识面窄.高中数学知识广泛,是对初中的数学知识推广和引伸,也是对初中数学知识的完善.
二、学习方法与学习状态
学习习惯因依赖心理而滞后.初中生在学习上的依赖心理是很明显的.第一,为提高分数,初中数学教学中教师将各种题型形成套路,学生依赖于教师为其提供套路;第二,父母盼子成材心切,回家后辅导也是常事.升入高中后,教师的教学方法变了,套路没有了,家长辅导的能力跟不上了,由“参与学习”转入“督促学习”.许多同学进入高中后,还象以前那样,跟随老师的这指挥棒运转,没有掌握学习的主动权.表现为无计划,等上课,课前不预习,对老师要上课的内容不深刻理解,课堂忙记笔记,没听到分析,不会巩固所学的知识.
思想松懈.有些同学把初中的那一套搬迁到高中来.他们认为自已在初中时并没有用功学习,只是在中考前努力了几个月就轻而易举地考上了高中,而且有的可能还是尖子班,因而认为读高中也不过如此,初始阶段根本就用不着那么用功,只要等到高考前努力几个月,也一样会考上一所理想的大学的.存有这种思想的同学是大错而后特错的.因为目前中考题目并不具有很明显的选拨性,同学们都很容易考得高分.但高考就不同了,目前我们国家的优秀大学还十分有限,因此高考的题目具有很强的选拨性,如果心存侥幸,想在高三时再发奋几个月就考上大学,那到头来你会后悔莫及的.同学们不妨打听打听现在的高三,有多少同学就是因为开始时不努力学习,临近高考了,发现自己缺漏了很多知识而焦急得到处请教.
学不得法.老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,还有些同学上课根本不听,自己另搞一套,结果是事倍功半,收效甚微.
不重视基础.一些自我感觉良好的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,好高骛远,重“量”轻“质”,陷入题海.到正规作业或考试中不是演算出错就是中途卡壳.
进一步学习条件不具备.高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备.高中数学很多地方难度大、方法新、分析能力要求高.如根分布与含参变量的讨论,空间概念的形成,二次函数值域的求法,三角公式的变形与灵活运用,排列组合应用题及实际应用问题等.有的内容还是初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,就必然会跟不上高中学习的要求.
三、明确的学习目的与科学的学习措施
高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动学习为主动学习,才能提高学习成绩.
良好的学习兴趣;古人说过:“知之者不如好之者,好之者不如乐之者.”即说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中.“好”和“乐”就是愿意学,喜欢学,这就是兴趣.兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性.在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者.那么如何才能建立好的学习数学兴趣呢?制定计划使学习目的明确,时间安排合理,不慌不忙,稳打稳扎,它是推动我们主动学习和克服困难的内在动力.但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志.课前自学,对所学知识产生疑问,产生好奇心.自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上.听课中要配合老师讲课,满足感官的兴奋性.听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力.及时复习是高效率学习的重要一环.通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”.独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程.这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由“会”到“熟”.解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程.解决疑难一定要有锲而不舍的精神.做错的作业再做一遍.对错误的地方没弄清楚要反复思考.实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”.把概念回归自然.所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、平面坐标系的的产生都是从实际生活中抽象出来的.只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确.
建立良好的学习数学习惯.习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要.建立良好的学习数学习惯,会使自己学习感到有序而轻松.高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用.学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中.另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力.最重要的是,同学们要知道,学习是一个长期的巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的.为什么高中要学几年而不是几天!许多许多的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度.
有意识培养自己的各方面能力;数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力.这些能力是在不同的数学学习环境中得到培养的.在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,例如数学第二课堂、数学竞赛、智力竞赛等活动.平时注意观察,譬如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理.其它能力的培养都必须学习、理解、训练、应用中得到发展.特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”,对习题的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,为数学能力的培养开设好各种课型,在这些课型中,学生务必全身心投入、全方位智力参与,最终达到各方面能力的全面发展与提升.
四、学好数学的基本要求
记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识.建立数学纠错本.把平时容易出现错误的知识或推理记载下来,以防再犯.争取做到:找错、析错、改错、防错.达到能从反面入手,深入理解正确东西;能由果索因,把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密.记忆数学规律和数学小结论.与同学建立好关系,争做“老师”,组成数学互助组.争做数学课外题,加大自学力度.反复巩固,消灭前学后忘.学会自主学习.
总之,阅读、观察、思维、记忆、练习等方法是相互联系、相辅相成的,缺一不可.只要我们在教学中能依据学生实际,结合教材特点及教学大纲的要求,遵循教学规律和认识规律,创造有利于指导学生形成科学学习方法的情境,就会使各个环节的指导适合学生的学习,使学生不断改进和完善自己的学习方法.只有学生想学、会学、乐学,才能把书本知识转化为自己的知识,再把理论知识转化为解决实际问题的能力,也才能大面积提高数学教学质量.并且我们应该永远牢记这样一句话:“兴趣和信心是学好数学的最好的老师!”
高中数学学习方法6
高中数学学习方法:
1、认识高中数学的特点。
高中数学是数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维,而高中数学语言表达抽象。
2、正确对待学习中遇到的新困难和新问题。
在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。
3、要将“以老师为中心”转变为“以自己为主体,老师为主导”的学习模式。
数学不是靠老师教会的,而是在老师引导下,靠自己主动思维活动去获取的,学习数学就是要积极主动地参与教学过程,并经常发现和提出问题,而不能依着老师的惯性运转,被动地接受所学知识和方法。
4、要养成良好的个性品质。
要树立正确的学习目标,培养浓厚的学习兴趣和顽强的学习毅力,要有足够的学习信心,实事求是的科学态度,以及独立思考、勇于探索的创新精神。
5、要养成良好的预习习惯,提高自学能力。
课前预习而“生疑”,“带疑”听课而“感疑”,通过老师的点拨、讲解而“悟疑”、“解疑”,从而提高课堂听课效果。预习也叫课前自学,预习的越充分,听课效果就越好;听课效果越好,就能更好地预习下节内容,从而形成良性循环。
6、要养成良好的审题习惯,提高阅读能力。
审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到目要“宁停三分”,“不抢一秒”,要在已有知识和解题经验基础上,译字逐句仔细审题,细心推敲,切忌题意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,将隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破点,从而形成解题思路。
高中数学学习方法7
一、基本知识
1.定义:
(1) .数列:按一定次序排序的一列数
(2) 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列叫做等差数列
等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列叫做等比数列
写作素材--美句仿写
1.太阳无语,却放射出光辉;高山无语,却体现出巍峨。
蓝天无语,却显露出高远;大地无语,却展示出广博。
鲜花无语,却散发出芬芳;青春无语,却散发出活力。
2.什么样的年龄最理想?鲜花说,开放的年龄千枝竞秀。
什么样的青春最辉煌?太阳说,燃烧的青春一片光芒。
什么样的心灵最明亮?月亮说,纯洁的心灵晶莹透亮。
什么样的人生最美好?海燕说,奋斗的人生快乐无穷。
3.我梦想:来到塞外的大漠,在夕阳的金黄中感受“长河落日圆”的壮丽。
我梦想:来到海边的沙滩,从波涛的澎湃中感受“乱石穿空,惊涛拍岸,卷起千堆雪”的惊心动魄。
我梦想:来到白雪皑皑的高山,在朝阳的艳丽中,领略“红装素裹”的分外妖娆。
4.幸福是“临行密密缝,意恐迟迟归”的牵挂;
幸福是“春种一粒粟,秋收千颗子”的收获;
幸福是“采菊东篱下,悠然见南山”的闲适;
幸福是“不畏浮云遮望眼,只缘身在最高层”的追求。
5.书是我的精神食粮,它重塑了我的灵魂。
简爱说过:“我们是平等的,我不是无感情的机器”,我懂得了作为女性的自尊。
白朗宁说过:“拿走爱,世界将变成一座坟墓”,我懂得了为他人奉献爱心是多么重要。
裴多菲说过:“生命诚可贵,爱情价更高。若为自由故,二者皆可抛”,我懂得了自由的价值。
鲁迅说过:“不在沉默中爆发,就在沉默中灭亡”,我懂得了反抗精神的可贵。
每读完一本书,我就完成了一次生命的感悟。
6.幸福是贫困中相濡以沫的一块糕饼,
幸福是患难中心心相印的一个眼神;
幸福是父亲一次粗糙的抚摸,
幸福是朋友一个温馨的字条;
幸福是母亲一声温柔的叮咛,
幸福是老师一次亲切的问候。
7.爱心是冬日里的一片阳光,使饥寒交迫的人分外感到人间的温暖。
爱心是沙漠中的一泓泉水,使濒临绝境的人重新看到生活的希望。
爱心是夜空中的一轮明月,使孤苦无依的人即刻获得心灵的慰藉。
爱心是春天里的一场细雨,使心灵枯萎的人特别感到情感的滋润。
爱心是夏日里的一阵清风,使心急如焚的人感到无比的凉爽。
爱心是黑夜里的一座灯塔,使迷失方向的航船找到停靠的港湾。
8.假如生命是一株小草,我愿为春天献上一点嫩绿。
假如生命是一棵大树,我愿为大地(夏日)撒下一片绿阴(阴凉);
假如生命是一朵鲜花,我愿为世界奉上一缕馨香;
假如生命是一枚果实,我愿为人间留下一丝甘甜。
9.生命真是一个奇迹。
一枝从污泥里长出的夏荷,竟开出雪一样洁白纯净的花儿;
一粒细细黑黑的萤火虫,竟能在茫茫黑夜里发出星星般闪亮的光。
一株微不足道的小草,竟开出像海洋一样湛蓝的花;
一只毫不起眼的鸟儿,竟能在枝头唱出远胜小提琴的夜曲;
一条柔软无骨的蚯蚓,居然能在坚实的土地里如鱼在海中似的自由遨游。
10.大自然能给我们许多启示:
滴水可以穿石,是在告诉我们做事应持之以恒;
大地能载万物,是在告诉我们求学要广读博览;
青松不惧风雪,是在告诉我们做人要坚毅刚强;
成熟的稻穗低着头,那是在启示我们要谦虚;
一群蚂蚁抬走骨头,那是在启示我们要齐心协力。
11.人们都爱秋天,爱她的天高气爽,爱她的云淡日丽,爱她的香飘四野。
人们都爱莲花,爱她的亭亭玉立,爱她的不蔓不枝,爱她的香远益清。
人们都爱春天,爱她的风和日丽,爱她的花红柳绿,爱她的雨润万物。
12.古往今来,大凡有所建树者。无不是临渊之后退而结网者。
如果哥伦布只是“临渊羡鱼”,而不去辟风斩浪,扬帆远航,他又怎么会有发现新大陆的壮举?
如果哥白尼只是“临渊羡鱼”,而不去苦心观测,创立新说,他又怎么会写出《天体运行》这部巨著?
如果只是 “临渊羡鱼”,而不去开通丝绸之路,张骞怎会有通西域那鞍前的潇洒?
如果只是“临渊羡鱼”,而不去开辟海上航线,鉴真又怎么会东海那水上风流?
高中数学学习方法8
一、理解基本概念
数学大厦是由一个个公理、定义、定理作基础砌成的,加强对这些概念的理解,有助于我们解题。且不谈对集合、极限、三垂线这些内涵丰富的概念的理解,单是从“a大于b”的定义上就可挖掘出很多东西。书上如此定义:“如果a-b>0,则称a>b”,从定义我们可以直接得到判定两个数大小的一种方法------作差比较法,深入思考可得a=b+△x(△x>0)(增量代换法),a>a+b/2>b(放缩法)等。越是这样深入想,就越觉得数学有无穷魅力。
二、总结实践经验
高三时,题目得很多,这就得从题目中理出一个头绪来,掌握通性法。例如,做了不少不等式的证明题后,可总结也证不等式的基本方法为:比较法(作差、作商)、公式法、判别式法、数学归纳法等,特殊方法有放缩法,常用技巧有“图像法”、“换元法”、
“裂项法”等。总结之后,对运用这些方法解出的典型题目做一个回忆,加深印象,达到“见过的题目类型会做,棘手的题目可用这些方法分别去做”的境界,解题能力大为提高。
做题目难免出错,要对常出错的地方进行总结,写出错因,并用一个本子记下来(不必记题目)。例如:等比数列求和要考虑公比是否为1,偶次根号下的数要大于0(实数),除数不能为0等等。
应该说,每次考试后,总有自己的一些对解题的体会,不妨定在一个本子上。如:考试时应注重时间的分配,解题速度如何,是计算出错还是方法不对,书写要整洁有条理等。
通过这些总结,对自己有了更深地了解,哪些地方娴熟,哪些地方薄弱,然后对症下药,使自己的知识完善,技能得到提高。
三、形成知识网络
在做好一、二点的基础上,要形成自己的知识网络,“由厚变薄”。高中数学知识包括代数、立体几何、解析几何,其中代数分支较多,包括集合、函数、不等式、数列与极限、复数、排列组合、二项式定理。各章又可细分,于是形成了一个大的网络。不过,要构建这个大网络,首先得构建好一个个小网络,即对每一个章节进行构建,内容包括概念、重点、基本解法与数学思想、易出错点与其他知识联接点等,待第一轮复习后,花大概两天的功夫将这些小网络并成大网络,在以后的复习中不断对这个网络补充,加深印象。
我想,经过了这样的三步曲,我们的数学理论知识就会得到大大的提高,加上不断地解题实践,我们的思维就会活跃,自信心就会增强,每次考试前回想一下网络,我们就会胸有成足地去面对考试,走向胜利!
高中数学学习方法9
初三的同学们,在你们结束了中考,渡过一个70天的暑假之后,即将步入高中,成为一名高中生。在经历了痛苦的中考复习之后,这个暑假的第一个任务当然就是休息和放松,把身心恢复到最良好的状态。但是,放松不能过度,因为等待你们的将是更加辛苦和紧张的高中学习生活。为了高中的学习能够相对轻松和顺利,这个暑假建议同学们要做相应的准备。下面,我从高中数学学科的角度给大家提几点建议:
第一,心理准备。所有同学必须做好心理准备,迎接高中艰苦的学习生活。初中数学和高中数学有着非常明显的区别。初中数学课程主要以具体的数字,符号,函数等为研究对象,学习一些基本的数学运算,掌握基本数学方法,研究一些基本的数学性质,相对比较容易理解,为高中数学的学习打下基础。而高中数学课程以抽象符号,函数为载体,深入研究一些数学性质。由于高中课程抽象,学生理解难度较大。从考试的数据也能明显的看出这一点:中考数学满分120分,由于题目相对容易,基础题及单一知识点题目相对较多,所以高分人数相对较多,110分以上学生大有人在。而高考作为选拔性考试,有明确的难度要求,近年来,满分150分的高考数学试卷,北京市的平均分保持在80~90分之间,可见难度之大与中考不同。
所以,许多初中成绩优秀的同学在高中成绩下滑严重,自信心受到打击,对学习失去信心,丧失兴趣。所以,同学们必须做好心理准备,迎接新的挑战。
第二,知识准备。为了更好的完成初高中数学的衔接。从知识上,同学们应做到以下两点:首先,应该对初中知识进行一遍复习,尤其是一元二次方程和函数两大部分内容,这些内容是高中数学的基础,所以必须做到熟练掌握。其次,预习高中上学期所学内容,提前接触高中知识。高中知识比较抽象,相对难以理解。并且课本相对容易,题目相对综合,所以在暑假,同学们应该起码做到理解课本内容,以便在开学之后更好的学习,完成更深入的题目。高一上学期所学的函数部分,是整个高中数学和核心,也是高考的重点,良好的掌握可让同学们受益三年。
第三,状态准备。这个暑假对于同学们来讲相对时间比较长。必要的放松必不可少,但是在开学之前,同学们应该及时调整状态,以便以一个良好的状态进入到高中的学习。我建议同学在开学(军训)前20天,大概就是8月之后,不要组织出游活动。保证每天有一定的学习时间,适应开学后的生活。从数学角度来看,应该每天看看高中课本,并且做一定量的练习题目。
高中的学习虽然很艰苦,很有挑战性,但是只要同学做好充分的准备,一定可以顺利的完成初高中的衔接,跟上高中学习生活的节奏,取得良好的成绩。
高中数学学习方法10
高中数学学习是中学阶段承前启后的关键时期,高中数学与初中数学存在很大差异,初中数学在教材表达上通俗易懂,研究对象多是常量,侧重于模仿和定量计算,学生往往只要多模仿做题就能考高分,而高中数学语言表达抽象,解题方法多样,没有一定量的积累与理解很难考高分。同学们要意识到自己已经是高中生了,不能用学习初中数学的心态对待高中数学,要转变观念、提高认识和改进学法,在此,我们就学习高中数学谈点看法。
1、和数学老师交朋友
我们之所以把这条放在首位,因为它确实对数学学习具有举足轻重的作用。人的感情具有传递性的,与老师的距离近了,也就离数学更近了。如何与老师成为朋友,很简单,经常在课堂上提问或者经常跑去请教老师,你们自然就是朋友了。
2、提高课堂听课效率
(1)科学预习。预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习后将课本的例题及老师要讲授的习题提前完成,还可以培养自己的自学能力,与老师的方法进行比较,可以发现更多的方法与技巧。总之,这样会使你的听课更加有的放矢,你会知道哪些该重点听,哪些该重点记。
(2)科学听课。听课的过程不是一个被动参预的过程,要全身心地投入课堂学习,耳到、眼到、心到、口到、手到。还要想在老师前面,不断思考:面对这个问题我会怎么想?当老师讲解时,又要思考:老师为什么这样想?这里用了什么思想方法?这样做的目的是什么?这个题有没有更好的方法?问题多了,思路自然就开阔了。
(3)科学笔记。听数学课要不要记笔记?当然要。不仅要记,而且要记好。当然,什么都记就不是记笔记了,应该针对自身听课的情况选择性记录。
记问题——将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。 记疑点——对老师在课堂上讲的内容有疑问应及时记下,这类疑点,有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后与老师商榷。
记方法——勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。
记总结——注意记住老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找存在问题、找到规律,融会贯通课堂内容都很有作用。
3、必须用好你的数学笔记。如果记下的笔记只停留在纸上那永远不会成为你的思维,要成为你自己的东西,必须用心去独立体会笔记里的每一个典型例题,每一个经典方法,每一个想法思路,完全理解并且会熟练运用才是根本。
4、加强课内课外练习。做数学题一定要养成良好的审题习惯,提高阅读能力。 审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到目要“宁停三分”,“不抢一秒”,要在已有知识和解题经验基础上,译字逐句仔细审题,细心推敲,切忌题 意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,将隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破 点,从而形成解题思路。
5、要养成良好的演算、验算习惯,提高运算能力。 学习数学离不开运算,初中老师往往一步一步在黑板上演算,因时间有限,运算量大,高中老师常把计算留给学生,这就要同学们多动脑,勤动手,不仅能笔算,而且也能口算和心算,对复杂运算,要有耐心,掌握算理,注重简便方法。
6、要养成良好的解题习惯,提高自己的思维能力。 数学是思维的体操,是一门逻辑性强、思维严谨的学科。而训练并规范解题习惯是提高用文字、符号和图形三种数学语言表达的有效途径,而数学语言又是发展思维能力的基础。因此,只有以本为本,夯实基础,才能逐步提高自己的思维能力。
7、要养成解后反思的习惯,提高分析问题的能力。 解完题目之后,要养成不失时机地回顾下述问题:解题过程中是如何分析联想探索出解题途径的?使问题获得解决的关键是什么?在解决问题的过程中遇到了哪些困 难?又是怎样克服的?这样,通过解题后的回顾与反思,就有利于发现解题的关键所在,并从中提炼出数学思想和方法,如果忽视了对它的挖掘,解题能力就得不到提高。因此,在解题后,要经常总结题目及解法的规律,只有勤反思,才能“站得高山,看得远,驾驭全局”,才能提高自己分析问题的能力。
8、要养成纠错订正的习惯,提高自我评判能力。 要养成积极进取,不屈不挠,耐挫折,不自卑的心理品质,对做错的题要反复琢磨,寻找错因,进行更正,整理归纳成为错题集,养成良好的习惯,不少问题就会茅塞顿开,割然开朗,迎刃而解,从而提高自我评判能力。
9、要养成善于交流的习惯,提高表达能力。 在数学学习过程中,对一些典型问题,同学们应善于合作,各抒己见,互相讨论,取人之长,补己之短,也可主动与老师交流,说出自己的见解和看法,在老师的点拨中,他的思想方法会对你产生潜移默化的影响。因此,只有不断交流,才能相互促进、共同发展,提高表达能力。如果固步自封,就会造成钻牛角尖,浪费不必要的时间。
10、要养成归纳总结的习惯,提高概括能力。 每学完一节一章后,要按知识的逻辑关系进行归纳总结,使所学知识系统化、条理化、专题化,这也是再认识的过程,对进一步深化知识积累资料,灵活应用知识,提高概括能力将起到很好的促进作用。
总之,同学们要养成良好的学习习惯,勤奋的学习态度,科学的学习方法,充分发挥自身的主体作用,不仅学会,而且会学,只有这样,才能取得事半功倍的效果。
高中数学学习方法11
学习程度不同的学生需要不同的学习方法。
如果你正因为数学的学习状态低迷而苦恼,请按如下要求去做:预习后,带着问题走进课堂,能让你的学习事半功倍;想要做出完美的作业是无知的,出错并认 真订正才更合理;老师要求的练习并不是“题海”,请认真完成,少动笔而能学好数学的天才即使有,也不是你;考试时,正确率和做题的速度一样重要,但是合理 地放弃某些题目的想法能帮助你发挥正常水平。
如果你正因为数学的学习成绩进步缓慢而郁闷,请接受如下建议:收集你自己做过的错题,订正并写清错误的原因,这些材料是属于你个人的财富;对于考试成 绩,给自己定一个能接受的底线,定一个力所能及的奋斗目标;合理的作息时间和良好的学习习惯将有助你获得稳定的学习成绩,所以,请制定好学习计划并努力坚 持;把很多时间投入到一个科目中去,不如把学习精力合理分配给各个学科。人对于某一知识领域的学习常出现“高原现象”,就是说当达到一定程度,再努力时, 进步开始不明显。数学重在培养观察、分析和推断能力
想成功,学习方法起着至关重要的作用。
学习数学,必须注重灵活精学,联系题意,针对问题,展开分析与解决,灵活的运用数学公式,不死记硬背。
学好数学,首先做到上课必须认真听讲,对老师提出的问题,深入思考与探究,课后进行题型的加深与反馈,确保知识的巩固。
而且,数学的知识最为广泛,题目的解答有多种的解法,不可能短时间内学完,因此,我们的学习数学时应做到“三心”。即“学好数学的信心、认真学习的决心和持之以恒的恒心。”只有这样才会让知识得到发展与思维的飞跃。
由于数学的题型千变万化、复杂多变。我们不可能把所有的题目解完,对此,做数学题时不须多做,重要的是精选,把一道题的类型完全理解透彻。做到举一反三、循序渐进、熟能生巧。所谓“宝剑锋从磨砺出,梅花香自苦寒来”,汗水的付出,必然会得到满足的回报
【高中数学学习方法】相关文章:
高中数学学习方法必备12-28
高中数学详细学习方法介绍整理02-15
高中数学学习方法15篇01-13
高中数学提分的学习方法归纳03-10
高中数学学习方法与技巧必看12-27
高中数学有效的学习方法(精选14篇)03-21
高中数学学习方法是怎么样的01-05
学习方法总结01-27
学习方法,我的语文学习方法作文12-18
高中数学教学设计01-17