初中数学解题技巧

时间:2022-08-23 15:31:04 学习方法 我要投稿

初中数学解题技巧

  学习能力终究成为了我们这个时代的核心竞争力,也成为了最值得我们提升自己和发展事业的核心能力,那么究竟有多少人已经掌握了属于自己的学习方法呢?下面和小编一起来看初中数学解题技巧,希望有所帮助!

初中数学解题技巧

  1、配方法

  所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

  2、因式分解法

  因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

  3、换元法

  换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

  4、判别式法与韦达定理

  一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。

  韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

  5、待定系数法

  在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的重要方法之一。

  6、构造法

  在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

  7、反证法

  反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。

  用反证法证明一个命题的步骤,大体上分为:

  (1)反设;

  (2)归谬;

  (3)结论。

  反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

  归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

  8、等(面或体)积法

  平面(立体)几何中讲的面积(体积)公式以及由面积(体积)公式推出的与面积(体积)计算有关的性质定理,不仅可用于计算面积(体积),而且用它来证明(计算)几何题有时会收到事半功倍的'效果。运用面积(体积)关系来证明或计算几何题的方法,称为等(面或体)积法,它是几何中的一种常用方法。

  用归纳法或分析法证明几何题,其困难在添置辅助线。等(面或体)积法的特点是把已知和未知各量用面积(体积)公式联系起来,通过运算达到求证的结果。所以用等(面或体)积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

  9、几何变换法

  在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

  几何变换包括:

  (1)平移;

  (2)旋转;

  (3)对称。

  10、客观性题的解题方法

  选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。

  拓展阅读:

  初中数学题型解题技巧

  数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。

  初中数学解题技巧:题型特点

  (1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。

  (2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。

  (3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。思辨性的要求充满题目的字里行间。

  (4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。

  (5)解法多样化:以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。

  初中数学考试必备解题技巧

  选择题

  1、注意选择题要看完所有选项,做选择题可运用各种解题的方法,常见的方法如直接法,特殊值法,排除法,验证法,图解法,假设法(即反证法),动手操作法(比如折一折,量一量等方法)。

  2、采用淘汰法和代入检验法可节省时间。有些判断几个命题正确个数的题目,一定要慎重,你认为错误的最好能找出反例,要注意分类思想的运用;对于选择题中有“或”和“且”的选项一定要警惕,看看要不要取舍。

  填空题

  1、注意一题多解的情况;

  2、注意题目的隐含条件,比如二次项系数不为0,实际问题中的整数等;

  3、要注意是否带单位,表达格式一定是最终化简结果;

  4、求角、线段的长,实在不会时,可以尝试猜测或度量法。

  解答题

  ①注意规范答题,过程和结论都要书写规范。

  ②计算题一定要细心,最后答案要最简,要保证绝对正确。

  ③先化简后求值问题,要先化到最简,代入求值时要注意:分母不为零;适当考虑技巧,如整体代入。

  ④解分式方程一定要检验,应用题中也是如此。

  ⑤解直角三角形问题,注意交代辅助线的作法,解题步骤。关注直角、特殊角。取近似值时一定要按照题目要求。

  ⑥实际应用问题,题目长,多读题,根据题意,找准关系,列方程、不等式(组)或函数关系式。求出方程的解后,要注意验根,是否符合实际问题,要记着取舍。

  ⑦概率题:要通过画树状图、列表或列举,列出所有等可能的结果,然后再计算概率。

  ⑧方案设计题:要看清楚题目的设计要求,设计时考虑满足要求的最简方案,不要考虑复杂、追求美观的方案。

  注意事项

  数学比较注重基础,平时的努力几乎可以把技巧的效果压榨成零,但在考试中也要注意以下三个小点:

  (1)先易后难,不要死磕一题,抢分节奏。要有选择的放弃,遇到暂时不会做的,先放一下,做完其他题目之后回过头来再做。

  (2)静下心检查。做完题目之后,留出1分钟左右的时间查看这一道题是否正确,在求做题速度的同时,提高正确率。

  (3)实在不会做,想想定义。前面也说数学是基础性学科,出的题目也多是从基础延伸出来的,遇到不会做的题目,回归基础,将相关定理、公式等列出来,进行必要的运算,尽量不要空着。

【初中数学解题技巧】相关文章:

初中学习数学解题技巧11-30

中考数学的解题技巧总结10-15

初中物理解题技巧12-15

数学手抄报的解题技巧06-20

数学选择题的解题技巧02-23

高考数学大题解题技巧12-15

高中数学解题技巧方法总结01-20

数学考研线性代数解题技巧总结11-19

初中语文关于诗的解题技巧07-02