【热门】数学学习方法
在生活、工作和学习中,大家都会有学习的需求,同时,越来越多的人开始注重正确的学习方法。你知道都有哪些学方法吗?以下是小编收集整理的数学学习方法,欢迎阅读,希望大家能够喜欢。
数学学习方法1
一年级的知识点及重难点:
(一)数与计算
(1)20以内数的认识。加法和减法。
数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合式题
(2)100以内数的认识。加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。 两位数加、减整十数和两位数加、减一位数的口算。两步计算的加减式题。
(二)量与计量钟面的认识(整时)。人民币的认识和简单计算。
(三)几何初步知识
长方体、正方体、圆柱和球的直观认识。
长方形、正方形、三角形和圆的直观认识。
(四)应用题
比较容易的加法、减法一步计算的应用题。 多和少的应用题(抓有效信息的能力)
(五)实践活动
选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。
小学一年级,数学学习方法
1、要培养学生的学习习惯。学习习惯的一方面就是作业的按时完成, 作业格式训练也是学习习惯培养的一个方面。要利用数学练习本让学生练习写数和写算式
2、重视孩子计算能力的培养
口算20以内的加减法是十分重要的基础知识,孩子必须学好,并能够达到熟练计算的程度。由于孩子的基础不同,不同孩子的计算熟练程度和速度也就存在一定差异,要缩小这一差异,仅靠每天一节数学课练习是不客观的,所以要经常性的练习。一年级要多让孩子借助小棒等学具摆一摆、说一说计算思路。
3、依据生活理解数学,让孩子在游戏中成长
有些数学知识较抽象,容易混淆,我们要注意给孩子创造生活情境,让孩子在实际体验中理解知识。如“左右”的认识,分辨左右是孩子本学期学习的一个难点,在生活中强化孩子对左右手的认识,引导孩子借此来分辨物体间的左右关系。同时还要注意一个参照物的问题,如两人面对面时,如何判别对面之人的左右边。
4、重视数学语言发展,让学生养成积极思维的习惯。 在生活中要多为孩子创设说数学的机会, 数学是“思维的体操”,如果不积极动脑思考就不可能学好数学。如在学习“10的分与合”时,在复习铺垫的基础上,提问:“10可以分成几和几呢?”引导学生一边涂珠算一边思考,从而自己得出结论。多问几个“为什么”比直接告诉学生“是这样的”要好得多。,学生在相互之间的思维撞击中学会了知识,获得了积极的成功体验。
总之,一年级学生由于特殊的年龄特征,所以要重视培养学生良好书写、思维的学习习惯。
数学学习方法2
一位哲人说过,太阳每天都是新的。是啊,生命的每一天都是新鲜的,也都是特别的。只要用心留意每一天,你将发现处处有奇迹。
至此,你可能明白了这样一个道理:不要让昨天占用今天太多的时间,五彩的梦想不可以挂在明天的风筝上,要把握好每一个今天。
进入中学,你可能会遇到很多困难,为此,你准备好了吗?比如,怎样与陌生的老师、同学相处,怎样调整好学习方法,如何把加重的课程学到最好,如何排解来自老师、家长乃至自身的学习压力,……诸如此类,都需要现在的你去认真思考。笛卡尔说过,我思故我在。我说,成功只光顾有准备会思考的人。
初中不是小学的简单的继续,学习内容,知识难度,都更上一层。抽象的逻辑思维不象小学那样简单的记忆,这需要我们思考理解和掌握。初中是行驶中的转折和爬坡,生活常识告诉我们,当迅速行驶的汽车在转弯或上坡时,缺少心理准备的乘客很容易站不稳而摔倒,同样在初中新生活开始的时候,如果我们缺乏心理准备不能及时调整就会出现不适应。
一、面对新篇章,重新定位。
我们踌躇满志来到侨中希望展现自我风采。而侨中人才济济以前出色的你不再拔尖,你头上冠军的光环也暗下来。但不要妄自菲薄,心灰意冷。不少同学已明白了“天外有天”的道理。在小学也许你们是佼佼者,是学校的花朵,老师的宠儿,在一片关爱赞扬中学习,但不要因为过去的成绩好而沾沾自喜,固步自封。也许你们现在表现一般,入学成绩比别人低,但不要就此盲目的断定自己不行而甘居下游。过去证明不了现在和将来。新的竞争刚刚开始。过高或过低的自我评价都会困住前进的脚步,新的起跑线上需要我们重新定位打造自己。
二、面对新面孔主动沟通。
同学们来自不同的城镇、不同的学校,差异大,要从心理上接纳需要一段时间,这时很多人感到孤独、忧虑,觉得与人格格不入,怀念过去同学、老师,这都是正常心态。想一想大家不都一样吗?都没有朋友,又都渴望交友。如果我们主动一些,大胆和同学搭话,热情为班级体做事,彼此做自我介绍,多探讨问题……。无形之中你就和同学们老师们“混”熟了。朋友也多了,越来越融入集体,陌生感自然会消失。
三、面对新环境尽快适应。
初中是人生的十字路口,不是避风的港湾,而是拼搏的战场,初中的学习更紧张,竞争更激烈,不过全国的初中都一样。没有紧张的学习,怎么尽快地掌握科学知识,没有竞争怎能迅速提高自己。为了我们的前途为了我们的理想,我们要拼搏,尽快适应紧张的学习生活。
四、面对新课程,调整学习方法。
升入初中如果再沿用小学的学习方法和方式,显然无法适应。这时需要我们摆脱对老师的依赖,做到自主主动的学习。一是积极适应新的授课方式。初中往往集中讲解重点,难点,要点,而且每课内容多,信息量大,所以要上课用心听,用心记。积极适应新老师的授课方式,包括语音,板书,思路,要求等。同时还要勤学好问,主动接触老师。二是制定科学的学习计划,包括长期计划(比如期中期末要达到什么水平,各科的目标是什么)和短期计划,即周计划、日计划(比如,怎么按排自己的一天活动)。此外可以找个竞争对手来激励自己。三要摸索适合自己的学习方法。学习不能停留在被动听课和机械地做作业上,要用心学,主动学,优选学,特别要讲究方法,把握好预习,听课、复习、做作业四个方面。
预习三环节。读 画 思。要认真阅读教材,教材是最好的教案,是名人经典著作,要认真读。画,把不懂的地方画起来,这是听课的着重点。思就是思考,掌握课本的大概内容、知识结构、知识要点。
四准备。
知识上:通过预习使听课具有明确的目的性和针对性;心理上:抛开杂念,全神贯注,紧跟老师思路,主动学习积极思考;物质上:要准备好笔记本,把重点记下来;方法上:边学边记,记重点,强调点和疑难点,不懂的课下及时问。
复习三意识。要有问题意识,通过复习在巩固已学知识的同时,找出自己的薄弱点,模糊点。记住提出问题的学生是好学生。要有总结的意识。把新旧知识结合起来,比如对系统知识进行归纳,对易混淆的知识进行比较,建立起一个知识网,并随时进行填充。这样才能把复杂知识记牢。反思意识,分析自己这段时间学习是否有进步,方法是否合适。是否有失误。并据此做出及时调整。
作业展示才能。作业练习既是对所学知识巩固提高又是对自己掌握知识的检测。要独立完成作业。在练习中学,学中练,作业中出现的问题要认真纠正,找出原因。以后要注意使自己做题水平和能力逐步提高。切记你对知识的掌握和能力的发挥,要落实到做题上,落实在试卷上,落实在中考成绩上才能显示你的才能,展示你的价值。
五、面对学习上困难挫折要勇往直前
初中课程知识深,难度大,知识面也宽,抽象思维多,逻辑推理多,学起来不轻松,特别是数学、外语、自然,大家要有充分的心理准备。遇到学习上的挫折,千万不能打退堂鼓,丧失学习信心,而要树立起奋勇向前的勇气,明知山有虎,偏向虎山行,只要大家肯钻研,顶得住,钻进去,入了门,以后的学习就会轻松些了。同学们别灰心,攻上去。希望就在前面。
六、要注重培养良好的学习习惯和坚强的性格。
行为科学研究:一个人一天的行为中大约只有5%是属于非习惯的,而剩下95%的行为都是习惯性。养成良好的学习习惯,按时上课,勤学好问,作业认真及时总结等,对你的学业上提高具有重要意义。科学研究表明:个性决定人的一生。我想一个坚忍不拔,不畏艰难困苦,孜孜不倦奋斗的人,一定会有美好的人生。
数学学习方法3
一、要打好基础:数学是一门系统性强,前后内容联系十分紧密的学科。就学校老师教学的内容而言,前面的内容往往是后面学习必备的基础,前面没有学好,肯定影响后面知识的学习。假如整数四则计算都不会,怎么去进行小数计算?一步解答的应用题都不会,怎么去解答两步或多步解答的综合应用题目呢?……因此,学习数学必须遵循从基础学起,循序渐进,逐步扩展的原则。如果你在以前的数学基础没有打好,那必须把以前欠缺的知识补起来,这一点非常必要。就如同建造高楼大厦,你把根基打好了,才能够在上面建造一层、二层、三层……。当然要补上所欠缺的基础知识,是很不容易的。基本的计算(如口算、笔算)、基本概念、基本的数量关系、基本的图形知识……,还有最基本的数学思想和解决数学问题的基本方法都是基础。我们首先要弄清楚欠缺在哪里?然后才能有针对的进行补救。
二、要学会倾听。数学是一门抽象的学问,思维性和逻辑性很强,是需要同学们动脑子,下功夫去学的科目。所以上课思想不要开小车,尤其是老师在讲解、分析,同学们在回答问题的时候,你要排除一切干扰,做到全神贯注的听,随着老师的讲解去思维,去发现,去拓展。只有你听明白了老师和同学的话,你也才能够分析判断别人的话是否正确,才能够学到老师和别的同学分析问题的方法。如:分析数量关系,寻求解决问题途径时,就如警察破案,步步紧逼,环环紧扣。老师在讲解时的每一步,都是下一步分析的基础,如果你上一步没有搞清楚,就会影响下一步的分析和理解。由此说明认真听讲是多么的重要。另外,学会倾听也是一种礼貌,一种尊重,更是一种学习精神。
三、要重视解决问题的方法和过程。学习数学知识,既要重视做题的结果,更要重视解决问题的方法和过程。重结果只会导致模仿、死记硬背、生搬硬套,若遇到陌生题型往往就会束手无策。只有注重解题过程和解题方法的同学,思维才能够得到真正的锻炼,才会变得越来越聪明。而实际上有些同学在学习中,只注重某道题目结果等于几,而不想搞清楚为什么等于几?比如一些图形方面的计算公式,我们不但要记住它,更要理解这些公式是怎样推导出来的,采用什么方法推倒出来的?这样我们才能够灵活运用,融会贯通。就算忘记了公式我们可以再推导,再总结出来。我们的分析和推理能力才能够提高。
四、要做适当的练习。学习数学离不开做题。孔子说:“学而时习之”、“温故而知新”。意思是:只有时常温习过去所学的知识,并整理而找出头绪,加以巩固,才能不断吸收和了解新的东西。不做适当的练习,学到的知识就没有办法巩固。比如我们学习了圆面积的计算,我们也理解了公式推导的过程,但没有及时去练习,那么学会的计算方法很快可能就忘记了。所以为了更好的掌握旧知识和获得新的知识,做适当的练习题,是很有必要的。
五、要敢于提出问题和自己的见解。不管是课本上的知识,还是老师讲的,我们要大胆提出与众不同的看法和问题。不一定老师讲的就是最好的方法,我们应该敢于和老师挑战,敢于和教材挑战。当然,不思维和不善于思考的人是做不到这一点的。比如在学习用比的知识解决实际问题的时候,你还可以想能不能用别的知识去解答呢?然后你就会发现用学过的整数除法知识或变换为分数知识都可以去解决这种问题。从而你一定会为你的解题方法而得意吧。
数学的学习方法就为大家整理到这里了,希望大家在学习上养成善于总结的好习惯。
数学学习方法4
1、数学是让很多同学饮恨的学科。因为数学一旦形成差距,分数拉开的很大,很多同学复习的时候往往注重公式、定理、推论的记背,这是不够的。数学要想掌握全部的知识点,必须学会理解。即复习课本时,把主要精力放在公式是如何来的,怎么推导的,用来解决数学什么问题的。这样的思维去过一次课本,才能把知识朝着应用方向转化。
2、在做数学题的时候,要充分利用题目信息去处理问题,而不是套用知识点。面对当今的高考,整理知识点式,不断重复式的复习效率已经不高,意义不大。因为题型的新颖性和灵活性,需要同学们处理的是,不再是单纯的知识点应用,而是如何利用题目的提示信息。也就是解题的入手点和关键点。
3、要把数学教材中的常规题型做好,所谓做好就是要用最少的时间把题目做对。部分同学在第一轮复习时对基础题不予以足够的重视,认为题目看上去会做就可以不加训练,结果常在一些“不该错的地方错了”,最终把原因简单的归结为粗心,从而忽视了对基本概念的掌握,对基本结论和公式的记忆及基本计算的训练和常规方法的积累,造成了实际成绩与心理感觉的偏差。
数学学习方法5
高一年级上学期数学期末考试复习方法
1、回归课本、明确复习范围及重点范围。本学期我们高一学习了必修1、必修4两本教材。先把考查的内容分类整理,理清脉络,使考查的知识在心中形成网络系统,并在此基础上明确每一个考点的内涵与外延。在建立知识系统的同时,同学们还要根据考纲要求,掌握试卷结构,明确考查内容、考查的重难点及题型特点、分值分配,使知识结构与试卷结构组合成一个结构体系,并据此进一步完善自己的复习结构,使复习效果事半功倍。
2、弄懂基本概念。先把你以前学过的却不懂的知识,概念,定理再结合课本、笔记复习,直到弄懂为止。
3、弄会基本方法。复习课上,老师会把最基本,最重要的思想、方法再过一遍,这时候一定认真听(为什么有的同学好像平时没怎么好好学,可是考试成绩不错呢,就是因为他抓紧了这段时间),当然,既然是“过”一遍,不可能还像刚开始讲课那样详细,因此课后你一定要对老师讲的方法做针对性练习,真正把数学复习计划落实到实处。
熟练掌握数学方法,以不变应万变。一般同一份试卷,相同方法不可能出现多次;同时,数学的主要方法在一份试卷上基本都能用得上。因此遇到思路一下不能突破的难题,要好好想想以前遇到的类似的问题是如何处理的,在已经作答好的题目中用过了哪些方法,常用的方法还有哪些没用得上,能否用来解决这个难题,只要平时多加分析,是不难发现解题思路的。
数学学习方法
先易后难。算术是比较复杂的,而对孩子来说,如果一开始就让他们学习较难的算术,很难让他们接受。家长可以将生活融入到孩子的数学学习中,例如去超市买苹果,让孩子自己挑选,并数出数量,等到回到家的时候,家长可以让孩子洗两个苹果,一人一个吃掉后,问孩子还有多少个苹果。通过这种方式,让孩子在生活中不知不觉的接触数学并学习数学,可以提高孩子对数学的兴趣,而且也能够帮助孩子理解数学在生活中的重要性。
运用分解技巧。从分解组合开始教孩子,一边分,一边用语言表述,一定要用嘴巴说出来,能说出来的孩子,表示她自己真的掌握了。从5以内的开始。先从分解2开始。每次分开后表述完,要记得在合起来。
大数记心里,小数上下加减。加法:大数记心里,小数往上数,如4+2=把4记在心里,往上数两个数,5、6,之后得出结果4+2=6。
减法:大数记在心里,小数往下数,如6-3=把6记在心里,往下数三个数,5、4、3,之后得出结果6-3=3。
家长需配合每日为宝贝出30道10以内加减法,提升幼儿的算术能力,注意不要让孩子数指头,养成习惯不好改,培养心算能力。
需要孩子掌握的一些识记的东西
第一个需要识记的是:10加几就等于10几,例如:10+1=11 10+2=12,一直加到9,第二个需要识记的就是1+1=2 2+2=4 3+3=6 4+4=8 5+5=10 6+6=12 7+7=14 8+8=16 9+9=18 10+10=20,这样记住了以后,进行20以外的加减法运算,对孩子来说,就不会很难学;
巩固成果。家长要经常给孩子出题目,只要有空闲时间就提问,而且问的时候语速要快,要给孩子一种紧迫感,这样可以锻炼孩子思维的效率,而且多次练习能够让孩子的思维能力不断增强,从而提高算术能力。如果家长在问的时候孩子能够快速的答出来,家长需要对孩子进行表扬,例如“真棒!”,“真厉害!”这些话语,会激发孩子的积极性,让孩子有一定的成就感,对数学算术产生兴趣,认为学习数学是一件很好玩的事情。
辅导技巧。要想提高孩子数学加减法能力,一定要让孩子对十以内的加减法熟练,要达到脱口而出的效果,家长在教育孩子的时候千万不能心急,要告诉孩子加减法是一个互补的关系,这样有助于孩子的理解。对于二十以内的加减法,需要建立在孩子熟练掌握十以内加减法之上才行,家长可以找一个横格的本子,在十页纸上随机为孩子出题,将20以内的数字的任何一个组合都顾及到,帮助孩子更深刻记忆。
通过孩子数学加减法的学习,能够锻炼孩子的感知和思维,为将来的学习打好初步基础,家长可以参考以上讲解的三个方面,增强孩子学算术的兴趣,调动孩子的积极性,并让他们将学到的知识运用到生活中去。
关于小学一年级数学的学习方法建议
1.学好数学,必须掌握三个基本概念:基本概念、基本规律和基本方法。
2.在完成主题后,我们必须仔细总结并相互推论。这样,我们就不会花太多的时间和精力,当我们遇到同样的问题在未来。
3.一定要得到一个全面的对数学概念的理解,并且不能有偏见。
4.学习概念的最终目的是用概念来解决具体问题。因此,我们应该主动运用所学到的数学概念来分析和解决相关的数学问题。
5.我们应该掌握各种解决问题的方法,在实践中有意识地总结,慢慢培养合适的分析习惯。
6.要主动提高综合分析能力,利用文本阅读进行分析和理解。
7.在学习中,要注意有意识地转移知识,培养解决问题的能力。
8.为了贯穿我们所学到的形成一个系统的知识,我们可以使用类比关系方法。
9.每一章的内容都是相互关联的,不同章节之间的比较,以及前后的知识真正整合在一起,有助于我们更深入地理解知识体系和内容。
10.在数学学习中,通过对相似的概念或规律进行比较,找出它们的相同点、不同点和联系,从而加深它们的理解和记忆。明确数学知识之间的相互关系,深入理解数学知识的概念,了解数学知识的衍生过程,使知识有序、系统化。
11.学习数学不仅要关注问题,还要关注典型问题。
12.对于一些数学原理、定理公式,不仅记得其结论,了解这一结论。
13.学习数学,记住并正确描述概念和规律。
14.在学习过程中,要注重理解,解放思想,把抽象化为具体,逐步培养学习数学的兴趣。
15.对概念进行恰当的分类可以简化学习内容,突出重点,明确上下文,便于分析、比较、综合和概念。
16.数学学习是最忌讳的知识歧义,知识点被混淆在一起,为了避免这种情况,学生应该学会写“知识结构摘要”。
17.学会对问题类型进行划分和组合,学会从多角度、多方面分析和解决典型问题,并从中总结出基本问题类型和基本规律方法。
18.根据同一种数学知识之间的关系形成一个有机的整体,从而达到全局记忆的目的。
19.结合各种特殊培训的特点,更多的学生和教师进行交流,学习他人的智慧,节省时间,提高问题的速度和质量,提高反应能力。
20.学习数学应该是循序渐进的,只要我们打好基础,就可以逐步完善。
21.解决数学问题,关键是要建立正确的数学概念,从数学思维的角度来看,使用数学法则来解决。
22.认真听课是奠定数学基础的重要组成部分,也是牢固掌握基础知识的根本途径。
23.在解决这一问题时,可以尝试采用不同的方法,如假设法、特殊值法、整体法等。
24.要深刻认识知识点,认真研读课本,认真倾听,了解现实。
25.认真倾听,一方面可以更好地掌握知识背景,加深理解,另一方面,也可以学习教师分析问题,解决问题的思路。
26.当我听老师的评论时,我想先想一想如何做问题,然后看看老师的解决办法是否一样,也就是想想他们是否和老师一样。阅读并思考老师在黑板上解决问题的过程,想想他们是否能这样写,想想在解决问题的过程中是否有漏洞。
27.我们要注意三点:第一,学会用笔;第二,注意课后练习;第三,分层预习。
28.不要担心一个或多个课程的糟糕成绩。利用你的优势。他们可以帮助你重建信心,这是成功的第一个关键。
29.在课堂上,我们应该注意以下三点:第一,用心观察,紧跟教学思路;第二,善于做笔记;第三,积极回答问题,敢于提问。
30.如果你想真正的理解、认识和评价自己,要有勇气面对自己和展示自己。
数学学习方法6
一、制定切实可行的复习计划,并认真执行计划。
为使复习具有针对性,目的性和可行性,找准重点、难点,大纲(课程标准)是复习依据,教材是复习的蓝本。复习时要弄清学习中的难点、疑点及各知识点易出错的原因,这样做到复习有针对性,可收到事半功倍的效果。
二,要学会在原有知识的基础上,进行归类整理,理清每一个单元的重点是什么,形成知识网络体系。
可充分老师发的概念卷和平时在课堂上作的听课笔记。还要学会分析每次单元考试的题型,一般的来讲是这样几个方面:一是概念题,二是计算题,三是实践应用题,四是操作题四个方面。复习的作用就是要:熟能生巧。所以复习阶段,可能要多做一些题型,当然也不是说要搞题海战术,但数学方面不做题又不行,要把握一个度。做一份题目要有一份题目的收获。题无非是就哪几种类型,做完一份题目以后要反思,多问几个为什么?
三、一定要在反馈矫正上下功夫,正确对待错题本。
把你做错的题目摘抄到本子上,先改错,再进行分类整理,找到自己的不足,针对错题的错因对症下药。千万不要认为订正麻烦,要养成习惯,学习成绩优秀稳定的同学,往往很重视订正和收集错题。如果针对错题一定能很好地做到查漏补缺,那复习的效果会更好!
四、一题多解,多题一解,提高解题的灵活性。
有些题目,可以从不同的角度去分析,得到不同的解题方法。一题多解可以培养分析问题的能力。灵活解题的能力。不同的解题思路,列式不同,结果相同,收到殊途同归的效果。同时也给其他同学以启迪,开阔解题思路。有些应用题,虽题目形式不同,但它们的解题方法是一样的,故在复习时,要从不同的角度去思考,要对各类习题进行归类,这样才能使所所学知识融会贯通,提高解题灵活性。
五、有的放矢,挖掘创新。
机械的重复,什么都讲,什么都练是复习大忌,复习一定要有目的,有重点,要对所学知识归纳,概括。习题要具有开放性,创新性,使思维得到充分发展,要正确评估自己,自觉补缺查漏,面对复杂多变的题目,严密审题,弄清知识结构关系和知识规律,发掘隐含条件,多思多找,得出自己的经验。
六、要养成检查的习惯。
复习时如能注意检查的重要性,效果也会事半功倍。根据同学们平时易出现的情况,建议大家要求学生从这些地方检查:
1、检查列式是否正确。读题,看是否该用加法、减法、乘法或是除法来算。
2、列式正确后,看算式中的数字是否抄错,是否和题中给我们的一样。
3、用估算的方法检查得数,如259+487,我们一看至少要等于六七百,如果得数是四百多,或三百多等,那计算一定错了!
4、精确地再算一遍,以得到正确的结果。注意一定要笔算,五年级后,小数计算用口算很容易错,而且要规范使用草稿本,不要以为是草稿本就可以乱写乱画!往往一些数由于书写不规范,抄答案都抄错!
5、检查单位和答有没有填写齐全。
6、操作题,要用铅笔,尺、三角板画图,切不可信手乱画,画完后记得标明条件(如:直角符号、长2厘米、高3厘米等),是否和题目要求一致。
7、解方程题,要记得写“解”,应用题还要先“设”。
培养学生数学学习能力,正确地掌握学习方法是关键。有些学生数学学习之所以学得很慢很伤心,一点新内容划很长时间不一定能很好地掌握,就在于他们没有能掌握一些学习数学的学习方法。当他们有了一些学习方法并能运用自如的时候,才会自然而然地形成学习能力。所以,关键还是要让学生在小学三年级就养成良好的学习方法。任何问题解决都有它自身的学习方法。例如在教学《问题解决》的时候,我会让学生做到以下几步:
(1)读题,理解题意,要求能用自己的语言描述问题。
(2)在理解的基础上,找出已知和未知,以及要解答的问题。
(3)画图帮助理解题意。(小学生的学习还是以直观为主,尤其是低年级学生,画图对他们理解题意是很有用的一种方法。)
(4)找出数量关系。(以口头分析数学量关系为主,说出每一步求什么。)
(5)列式,计算,并作答。
这是一种基本的问题解决方法,但又是很重要的学习方法。通过这种方法的训练,可以极大地促进学生逻辑思维能力及分析问题能力的形成。
据高效课堂教学的要求,学会数学课的预习方法,也会对培养学生数学学习能力有很大的帮助。由是,在平时的数学教学中,要注意培养学生的数学自学能力。在老师有计划有步骤有目的的引导下,教会学生阅读数学课本,做好阅读笔记,尤其要记下自己还没有想明白弄清楚的问题,以便与同学交流的时候有方向有内容。
数学学习方法7
数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
如何做好初二物理的入门 针对本学期刚开设的物理课,我想向同学们介绍以下几种有效学习方法,希望能帮助同学们养成科学学习的良好习惯。
1、制定合理的学习计划:设定一个目标,制定一个学习计划。目标要切实可行,既不能高不可攀,也不要毫无吸引力。学习计划一旦制定好,就要严格执行,每一天都不能放松。在计划的执行过程中遇到困难时,要想办法去战胜困难,必要时请家长和老师适当帮助。
2、必要的课前预习:中国有句古话:“凡事预则立,不预则废”。这句话强调不管做什么事,要事先有充分的准备。同学们学习物理知识,课前的预习,既是心理准备,也是具体内容的准备。
课前预习的基本要求是:认真阅读教材,了解教材内容,思考重点,发现学习难点,做好听课的准备。同学们预习不预习直接关系到学习效果的优劣。在你认真阅读教材的过程中,新的知识吸引你去思考,去探究。对于定义、规律、公式和例题,要重点思考,看是否明白,不明白的内容用笔划出来或作适当标记,准备课堂上有目的的听老师讲解。如果预习后再做一部分练习题训练一下,效果会更好。
切忌:预习功课走马观花,流于形式,不动脑子。这样达不到应有的效果。要知道,预习是预先自己学习,这是培养、提高学习能力的重要环节。也是提高学习质量的重要环节。
3、参与好45分钟,在学习过程中,会不会参与是很重要的。同学们有了预习的基础,在心理上就会有种想听听教师怎么讲、跟自己的理解一样不一样的愿望,而且还有很多问题要问。上课时思维跟着教师的教学走,眼睛看、耳朵听、心里想,动手做,多讨论,需要做练习时行动要迅速,切忌磨磨蹭蹭。 有的同学自制力差,易受内部、外部干扰而听课走神。这主要是意志力问题,应有意识的培养自己的意志力,在提高自控能力上多下功夫。
4、提高作业质量:做作业的要求是,看清题,抄准题,理清思路,认真检查,一次做对。
有的同学只顾快点完成作业,题目没看清楚,有时抄错题,不是先想好了再动笔,而是写一步想一步。这样,作业质量肯定不会好。要知道,做作业是运用所学知识解决问题、提高学习技能的过程,必须踏踏实实,一步一个脚印。
做作业时要在旁边预备草稿本或草稿纸,有的作业步骤需要先打草稿准确了再抄在作业本上。作业本上尽量减少或没有涂改的痕迹。
5、及时纠正错题:做错题是经常发生的事,从纠正错误入手也是提高学习成绩的好途径。建立一个专用的本子。并给它取个名字,“错题大家庭”、“拦路虎乐园”都是不错的选题。每次作业或考试出现错误,在专用的本子上将题目抄下。之后分析错误原因,是不会审题,还是粗心大意;是没有掌握这部分内容,还是不会正确分析。用红笔将错误的内容标出。然后按正确的方法重做一遍。过一段时间,再把错题整理一遍,将错误的类型汇总,看一看哪部分错的最多的,哪种错误原因最为常见。这样你对自己的学习状况有一个清楚的了解,你就可以有的放矢地复习了。
6、学会使用工具书。我国古代思想家孟子有一句很有名的话:“工欲善其事,必先得其器。”意思是说,工匠做事如果想做得又多又好,就一定要在做事之前将他的工具磨得十分锋利。在学习中,同学们的课本、老师给同学们印发的阅读材料、同学们自己买的参考书等,就是学习的“利器”。使用工具书的能力对于同学们来说,最主要的是学会从自己阅读过的文字中提取出需要的信息。
7、掌握多种思维方法,发展思维能力。归根到底,取得好成绩的的关键在于勤于思考、善于思考。学习过程中,同学们应逐步学会将所学知识进行分类、比较、分析、综合、归纳等一些逻辑思维的基本方法,还应重视求异思维、发散思维、辩证思维等思维方法的培养,使思维能够灵活运转。
8、善于联系实际,增强应用物理知识解决实际问题的本领。学到的知识要善于运用到实际中去,运用知识的方式是很多的,如解释现象、讨论问题、设计实验、解答习题等,要在联系实际的过程中,扩展和加深自己的知识,学会对具体问题具体分析,学会科学的思维方法,提高分析和解决问题的能力。
对于同学们来说,解题也是应用知识的一个重要方面,是加深对知识理解的重要环节。每做一题,力求真懂,方能有所收获。
一般来说解题的基本步骤是:明确研究对象,分析习题所叙述的物理过程,找出影响过程变化的主要因数,建立恰当的物理模型,从而确定解题的方向。
9、学物理一定要有信心,有克服困难,战胜困难的勇气。不妨带一点霸气——我一定能学好物理。
学习物理也是对自己的一次挑战,在这个过程中当然会遇到各种各样的困难。但是,在阅读课本、认真听讲的时候,你将享受到掌握新知识的满足;在观察实验现象和动手做实验时,你将体会到探索科学奥秘的快乐;在钻研困难问题时,你将感受到过关斩将所获得的喜悦。这时,学习不再是苦恼的事,物理将越学越有趣。
初三化学学习方法
一、课前预习
1. 通读要学习的内容,划出你认为的重点和难点。
2. 弄清将学习的新知识与哪些旧知识有关(若这些旧知识已遗忘,应重温一遍)。
3. 找出疑难问题,并记录。
二、课堂听讲
1.用脑
⑴紧跟老师的思路,在老师点拨的基础上,还要多问几个为什么,以提高自己的思维能力,形成自己的思路。
⑵要及时记忆,将老师讲的重点内容尽可能地当堂掌握。
2.用眼
⑴看黑板。即注意观察老师板书的思路和重点及关键的内容(老师常配以不同颜色的粉笔书写)。
(2)学化学者,人人喜欢看实验,但大多数人不会看实验,常常是看热闹,而不会看门道,因为好看的未必是重要的。什么是重要的呢?这由实验目的确定的。
3.用耳。
⑴细心听老师讲解。要从老师讲解时语调的变化中听出重点,听出关键。
⑵要认真听其他同学回答问题和在课堂讨论中的发言。除了辨别他们的回答和发言是否正确外,还要学习他们的思维方法,或分析他们答错的原因,这样有利于提高自己分析问题、解决问题的能力。
4. 用手
⑴做好课堂笔记。记笔记也要讲究方法和效果。其一,记笔记时,不能什么都记。记什么,不记什么,要经过思考再确定;其二,笔记有助于抓住课堂学习和重点,强化记忆;其三,课后复习时,笔记能有助于再现课堂学习的情景,因而笔记是搞好课后复习的重要的复习资料。
⑵做实验或模仿实验。积极参与实验探究,除认真地观察实验现象外,还要注意模仿老师的操作,这样做有助于培养正确的操作技能。
5. 用口
⑴认真回答老师提出的各种问题。
⑵积极参加课堂讨论,要敢于争辩、善于争辩,在争辩中加深对问题的理解。
三、课后复习
1. 回顾课堂所学内容,弄懂弄通所学知识,大概3分钟左右。
2. 看书,看笔记,并有重点记忆。大概10分钟左右。据课堂听讲、讨论的情况,整理好笔
记或写出学习心得(如总结自己在学习中的经验教训),在复习的基础上做一些典型的习题,以判断自己对所学内容的掌握情况。另外还可以阅读一些参考资料,以扩大知识面。
初三化学学习方法
初三学生该怎么学习化学知识点?下面有几点建议,仅供各位初三同学参考:
理一理
毋须置疑,初三学习的任务是繁重的,学习中,化学的练习已做得不少,但我们应当静心地整理一下基础内容,因为考试中基础知识是重要的一个方面。主要的基础知识大致有:物理变化和化学变化的判断;物理性质和化学性质的判断;氧化剂和还原剂的分辨;基本化学反应类型(含化合、分解、置换、复分解)的判断;各种液体中哪一种是或不是溶液;溶液、溶剂和溶质的区分;原子和元素的区别以及各自适用的背景;原子和分子的共性和区别;一些化学物质(氧气、氢气、炭、二氧化碳、石灰水、碳酸钙、铁、硫酸铜晶体或溶液等)在发生变化时所伴随的现象;化学实验基本操作中的规范问题(量筒的读数、固体的取用、液体的倾倒和滴加、天平的物码位置、加热操作、气体收集装置等);溶液的酸碱性及pH;一些化学符号及其周围数字的意义等。对于这些问题,学习基础相对薄弱的同学,更应该引起重视,因为考试无论怎样变革,考前整理一下这些基础内容,能使你比较容易掌握这些化学基础知识,使自己在考试中自信心得到提高,有利于你顺利通过考试。
想一想
除了上述的理一理,我们同学还要做到勤于思考。如果学习中缺乏对知识的理解和比较,就会割裂知识之间的联系,同学们对基础知识的掌握只是生吞活剥,这样反而加重了学习的负担,使学习变得苍白无趣。因此,同学们也要学会整理知识,注意知识的网络的建立,并要多想想为什么。如在物质的结构、性质与用途的关系方面:我们同学要建立这种思维,即有什么样的结构,就有什么性质;有什么样的性质,就有什么用途。经验告诉我们:从物质的用途也能推断出其性质、再推断到物质的结构。
还有,同学应当建立实验探究的思维模式。一项探究活动,往往包含着这三个层面的问题:假设应该采取什么方法、手段或采用什么化学试剂和由此而可能出现的现象;产生这些现象的原因或应当得出什么样的结论。当然,这些思维模式,都离不开化学基础知识,所以,只有做到知其然又知其所以然,才能将所学的知识变得有血有肉,我们的综合能力也得到增强。如果同学们做到这一点,就有希望在考试中获得相对理想的成绩。
数学学习方法8
重基础把握知识网络
基础题送分到位;中档题拉开距离;高档题考查能力。文理科完全相同的54分。有42分考查内容相近(文理第17、18题,文22题与理科21题),但文科运算量或难度明显小于理科,客观题有24分不同,解答题有两大题计32分不同,从总体上看,文理科试题能体现考生的实际差别,很符合中学数学教学现状。
理科试卷各学科所占分数:代数约90分,解析几何30分,立体几何16分,三角14分。文科试卷各学科所占分数:代数约88分,解析几何24分,立体几何16分,三角22分。其中立体几何都是一个大题一个小题,要求不高,大题为求异面直线所成的角,用向量和传统方法都可以做。三角没有解答题,考查知识点相对简单,恒等变形要求不高。文科的解析几何都是基本要求:求直线交点坐标、直线与圆的位置关系及简单的轨迹,计算量不大。理科的解析几何解答题需要解二元二次方程组,多数考生可以得分,但第二问要转化为二次函数在闭区间上的最值问题,对考试的思维能力有一定要求,还有部分考生在配方时出现错误,在此把一部分考生的水平区分出来。应用题文理相同,结合目前的形势,考查等差、等比数列的基本应用,但试题还是设计一些“小坎儿”,考查思维的严密性。文、理科最后两道题上手相对容易做对难。对考生的数学素养、数学能力要求较高,便于优秀考生展示才能。
复习方法切实打好基础
第一轮复习,要扎扎实实,不要盲目攀高,欲速则不达。要把书本上的常规题型(20xx年约有70~80%是书本上的题型)做好,所谓做好就是要用最少的时间把题目做对。部分同学在第一轮复习时对基础题不屑一顾,认为这是“小菜一碟”,只是把心思放在一些能力题上。结果常在一些"不该错的地方错了",应引以为戒,及时调整学习策略和学习方法。
部分同学(尤其是脑子比较好的同学),自己感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范,在正规考试中即使答案对了,由于过程不完整被扣分较多。部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,浪费很多时间,影响整体得分。这些问题都很难在短时间得以解决,必须在平时下功夫努力改正。
“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合平时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。必要时作些记录(不妨称为错解题记),以便以后查询。
数学学习方法9
高中数学学习方法:其实就是学习解题
高中数学是应用性很强的学科,学习数学就是学习解题。搞题海战术的方式、方法固然是不对的,但离开解题来学习数学同样也是错误的。其中的关键在于对待题目的态度和处理解题的方式上。
1、首先是精选题目,做到少而精。
只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。
2、其次是分析题目。
解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。
3、最后,题目总结。
解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:
①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。
②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。
③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。
④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。
【摘要】“高中数学多边形内角和公式”数学公式是解题的要点,要灵活运用,希望下面公式为大家带来帮助:
设多边形的边数为N
则其内角和=(N-2)*180°
因为N个顶点的N个外角和N个内角的和
=N*180°
(每个顶点的一个外角和相邻的内角互补)
所以N边形的外角和
=N*180°-(N-2)*180°
=N*180°-N*180°+360°
=360°
即N边形的外角和等于360°
设多边形的边数为N
则其外角和=360°
因为N个顶点的N个外角和N个内角的和
=N*180°
(每个顶点的一个外角和相邻的内角互补)
所以N边形的内角和
=N*180°-360°
=N*180°-2*180°
=(N-2)*180°
即N边形的内角和等于(N-2)*180°
如何学好数学
首先和敏捷对于来说固然重要,但良好的可以把效果提高几倍,这是先天因素不可比拟的。学好首先要过的是关。任何事情都有一个由量变到质变的循序渐进的积累过程。
一.。不等于浏览。要深入了解内容,找出重点,难点,疑点,经过思考,标出不懂的,有益于抓住重点,还可以培养自学,有时间还可以超前学习。
二.听讲。核心在。1。以听为主,兼顾记录。2。注重过程,轻结论。
3.有重点。4。提高听课。
三.。像演电影一样把课堂,整理笔记,
四.多做练习。1。晚上吃饭后,坐到书桌时,看数学最适合,2。做一道数学题,每一步都要多问个别为什么,不能只满足于课堂上的灌输式传授和书本上的简单讲述,要想提高必须要一步一步推 高中历史,一步一步想,每个过程都必不可少,3。不要粗心大意,4。做完每一道题,要想想为什么会想到这样做,建立一种条件发射,关键在于每做一道题要从中得到东西,错在哪,5。解题都有固定的套路。6还有大胆的夸奖自己,那是树立信心的关键时刻,
五.总结。1。要将所学的知识变成知识网,从大主干到分枝,清晰地深存在脑中,新题想到老题,从而一通百通。2。建立错误集,错误多半会错上两次,在有意识改正的情况下,还有可能错下去,最有效的应该是会正确地做这道题,并在下次遇到同样情况时候有注意的意识。3。周末再将一周做的题回头看一番,提出每道题的思路方法。4有问题一定要问。
六.考前复习,1。前2周就要开始复习,做到心中有数,否则会影响发挥,再做一遍以前的错题是十分必要的,据说有一个同学平时只有一百零几,离只有一个月,把以前错题从头做一遍,最后他数学居然得了147分。2。要重视基础,
另外,听老师的话,勤学苦练不可少,没有捷径,要乐观,有毅力,要有决心,还要有耐心,学数学是一个很长的过程,你的努力于回报往往不能那么尽如人意的成正比,甚至会有下坡路的趋势,但只要坚持下去,那条成绩线会抬起头来,一定能看到光明。
《希腊文集》中的方程问题
《希腊文集》是一本用诗歌写成的问题集,主要是六韵脚诗。荷马著名的长诗《伊丽亚特》和《奥德赛》就是用这种诗体写成的。
《希腊文集》中有一道关于毕达哥拉斯的问题。毕达哥拉斯是古希腊著名数学家,生活在公元前六世纪。问题是:一个人问:“尊敬的毕达哥拉斯,请告诉我,有多少学生在你的学校里听你讲课?”毕达哥拉斯回答说:“一共有这么多学生在听课,其中 在学习数学, 学习音乐, 沉默无言,此外,还有3名妇女。”
我们用现代方法来解:设听课的学生有x人,根据题目条件可列出方程
这是一个一元一次方程。
移项,得
答:毕达哥拉斯有28名学生听课。
《希腊文集》中还有一些用童话形式写成的数学题。比如“驴和骡子驮货物”这道题,就曾经被大数学家欧拉改编过。题目是这样的:
“驴和骡子驮着货物并排走在路上。驴不住地往地埋怨自己驮的货物太重,压得受不了。骡子对驴说:‘你发什么牢骚啊!我驮得的货物比你重。假若你的货物给我一口袋,我驮的货就比你驮的重一倍,而我若给你一口袋,咱俩驮和的才一样多。’问驴和骡子各驮几口袋货物?”
这个问题可以用方程组来解:
设驴驮x口袋,骡子驮y口袋。则驴给骡子一口袋后,驴还剩x-1,骡子成了y+1,这时骡子驮的是驴的二倍,所以有
2(x-1)=y+1 (1)
又因为骡子给驴一口袋后,骡子还剩下y-1,驴成了x+1,此时骡子和驴驮的相等,有
x+1=y-1 (2)
(1)与(2)联立,有
这是一个二元一次议程组。
(1)-(2)得 x-3=2,
x=5 (3)
将(3)代入(2),得y=7。
答:驴原来驮5口袋,骡子原来驮7口袋。
《希腊文集》有一道名的题目“爱神的烦恼”。这里有许多神的名字,先介绍一下:爱罗斯是希腊神话中的爱神,吉波莉达是赛浦路斯岛的守护神。9位文艺女神中,叶芙特尔波管简乐,爱拉托管爱情诗,达利娅管吉剧,特希霍拉管舞蹈,美利波美娜管悲剧,克里奥管历史,波利尼娅管颂歌,乌拉尼娅管天文,卡利奥帕管史诗。
这道题也是用诗歌形式写在的:
爱罗斯在路旁哭泣,
泪水一滴接一滴。
吉波莉达向前问道:波利尼
“是什么事情使你如此伤悲?
我可能够帮助你?”
爱罗斯回答道:
“九位文艺女神
不知来自何方
把我从赫尔康山采回的苹果,
几乎一扫而光,
叶芙特尔波飞快地抢走十二分之一,
爱拉托抢得更多——
七个苹果中拿走一个。
八分之一被达利娅抢走,
比这多一倍的苹果落入特希霍拉之手。
美利波美娜最是客气,
只取走二十分之一。
可又来了克里奥,
她的收获比这多四倍。
还有三位女神,
个个都不空手,
30个归波利尼娅,
120个归乌拉尼娅,
300个归卡利奥帕。
我,可怜的爱罗斯。
爱罗斯原有多少个苹果?还剩下50个苹果。”
设爱罗斯原来有x个苹果,则6位文艺女神抢走的苹果分别是 。
可列出方程
答:爱罗斯原来有苹果3360个。
选自《中学生数学》20xx年5月下
20xx高考数学复习三步曲
编者按:小编为大家收集了“20xx高考数学复习三步曲”,供大家参考,希望对大家有所帮助!
今年高考文理科的数学试卷总体难度不大,为师生所接受。文科试卷难易程度适中,尤其是填空题和选择题难度不大,解答题难易程度和试题坡度安排都比较合理,有利于考生的发挥,也有利于指导以后的学习。
理科试卷容易题、中等题和难题比例恰当,注重逻辑思维能力和表达能力(运用数学符号)以及数形结合能力的考查,部分试题新而不难,开放题有所体现,把能力的考查落到实处。但我个人认为,今年试卷对高中数学的主干知识的核心内容考查不到位,但不等于我们今后可以完全不重视。
抓基础:不变应万变
把基础知识和基本技能落到实处。唯有如此才能以不变应万变。比如,文科第22题是一道经典题型,考查圆锥曲线上一点到定点距离,既考老师又考学生。所谓考老师是说这样的题型你讲过没有,是怎么讲的?学生的典型错误(以定点为圆心作一个与椭圆相切的圆,再利用判别式等于0)是怎么纠正?正确解法(转化为二次函数在某个区间上的最值)是怎么想到的?只有经过这样的教学环节,学生才能真正理解。所谓考学生是说你自己做错了,老师重点讲评了的经典问题,你掌握了没有?掌握的标准是能否顺利解答相应的变式问题。由于第(3)含有参数,需要分类讨论,能有效甄别考生的思维水平和运算能力。本题以椭圆(解析几何重点内容之一)为载体,考查把几何问题转化为代数问题的能力(这是解析几何的核心思想),以及含参数的二次函数求最值问题(也是代数中的重点和难点),一举多得。
当然,可能会有人认为这道题形式不新,其实,要求考题全新既无必要,也不可能,只要有利于高校选拔和中学教学就好,不必过分求新、求异。
理科的第22题相对较难,不少同学反映不好表述。若能从集合的包含关系这个角度考虑,则容易表述,部分考生是直接对两个数列进行分类,由于要用到一些多数学生不熟悉的整除知识,因而感到困难,无法下手。这就体现基础知识和基本技能的重要性。
尽管今年理科试卷在知识点分布上有些不尽如人意,但复习不能受此影响,仍然要全面、扎实复习,不能留下知识点的死角,相应的技能、技巧要牢固掌握,思想方法都要总结到位,这样才能“不管风吹浪打,胜似闲庭信步”。
破难题:提升应对力
如何应对“题梗阻”?考试中遇到不会做的题目很正常,有些同学会因此影响临场发挥。考生进考场就像运动员进运动场,心理素质很重要,把心理辅导和答题技巧融于学习之中。在高三复习过程中,不仅要讲数学知识,同时还要训练学生的心理素质和培养学生的答题技巧,这样才能使学生在考场上应付裕如,出色发挥,考出好成绩。
理科的22题第(2)卡住不少考生,耽误时间还影响心情,以致第(3)和后面第23题来不及或无心去做,其实,做第(3)题用不到第(2)的结论。而第23题是新编的开放性问题,首先要静心才能读懂题目,而读懂题目至少第(1)、(2)两题不难。要做到这些并不容易,不是临考前“先易后难”一句话学生就能做到,需要在平时教学过程中结合具体问题,训练学生的心理素质,提高其在解题过程中遇到困难时的应变能力,掌握应变策略,才能在考场上“敢于放弃”,从容跳过不会做的题或在解答题中跳步解答,把自己能做的题目先做对,把应得的分得到,这样考试总是成功的,无论分数高低。
为何时间与成绩不成正比?高三数学就是大量解题,有些重点中学的优秀学生的高考成绩甚至不比高二时考分高,岂不是白学?其实,这是误解。数学讲究逻辑,问题从哪里来(已知),到哪里去(求证),中间有哪些沟沟坎坎(思维障碍),怎么克服(怎样进行等价转化),不仅是照葫芦画瓢的操作性(当然也是必要的)训练,更重要的是以数学知识为载体,让学生学会思考问题的方式方法,还要在解题后对问题作归纳总结,找出规律,有时还要把问题作适当推广,把学生的逻辑思维引到辩证思维。这样经过一年的高三数学学习,学生收获的不仅是分数,还有对人终生受用的思维品质的提高。
重方法:培养好品质
有些同学做了许多题,就是成绩提高不见提高,自己和家长都很纳闷。其实学习数学关键是要掌握方法,同时还要培养敢于做难题、新题的胆量和毅力。重复性操作的题目做再多,意义也不大。对待难题的态度是培养学生意志品质的好时机,不能轻易错过(当然也要因人而异)。有些同学往往认为只要弄懂思路,不必解到底。其实,这样的同学往往眼高手低,会而不对,考试成绩忽高忽低,原因在于某些细节处理不当,造成“一失足成千古恨”,事后以粗心搪塞过去。这就需要老师对学生深入了解,结合具体问题给予悉心指导,帮助学生找出真实原因,并制定改正错误的办法,这一过程表面上是帮助学生学会解题,实际上对学生意志品质的培养也就潜移默化地得到了落实。
我们有理由相信,把解题和人的素质培养有机结合的高三数学教学,不仅能提高学生的解题能力,还能促使他们健康成长,让我们一起努力!
以上就是为大家提供的“20xx高考数学复习三步曲”希望能对考生产生帮助,更多资料请咨询中考频道。
生物数学概论
生物数学是生物学与数学之间的边缘学科。它以数学方法研究和解决生物学问题,并对与生物学有关的数学方法进行理论研究。
生物数学的分支学科较多,从生物学的应用去划分,有数量分类学、数量遗传学、数量生态学、数量生理学和生物力学等;从研究使用的数学方法划分,又可分为生物统计学、生物信息论、生物系统论、生物控制论和生物方程等分支。这些分支与前者不同,它们没有明确的生物学研究对象,只研究那些涉及生物学应用有关的数学方法和理论。
生物数学具有丰富的数学理论基础,包括集合论、概率论、统计数学、对策论、微积分、微分方程、线性代数、矩阵论和拓扑学,还包括一些近代数学分支,如信息论、图论、控制论、系统论和模糊数学等。
由于生命现象复杂,从生物学中提出的数学问题往往十分复杂,需要进行大量计算工作。因此,计算机是研究和解决生物学问题的重要工具。然而就整个学科的内容而论,生物数学需要解决和研究的本质方面是生物学问题,数学和电脑仅仅是解决问题的工具和手段。因此,生物数学与其他生物边缘学科一样通常被归属于生物学而不属于数学。
生命现象数量化的方法,就是以数量关系描述生命现象。数量化是利用数学工具研究生物学的前提。生物表现性状的数值表示是数量化的一个方面。生物内在的或外表的,个体的或群体的,器官的或细胞的,直到分子水平的各种表现性状,依据性状本身的生物学意义,用适当的数值予以描述。
数量化的实质就是要建立一个集合函数,以函数值来描述有关集合。传统的集合概念认为一个元素属于某集合,非此即彼、界限分明。可是生物界存在着大量界限不明确的模糊现象,而集合概念的明确性不能贴切地描述这些模糊现象,给生命现象的数量化带来困难。1965年扎德提出模糊集合概念,模糊集合适合于描述生物学中许多模糊现象,为生命现象的数量化提供了新的数学工具。以模糊集合为基础的模糊数学已广泛应用于生物数学。
数学模型是能够表现和描述真实世界某些现象、特征和状况的数学系统。数学模型能定量地描述生命物质运动的过程,一个复杂的生物学问题借助数学模型能转变成一个数学问题,通过对数学模型的逻辑推理、求解和运算,就能够获得客观事物的有关结论,达到对生命现象进行研究的目的。
比如描述生物种群增长的费尔许尔斯特-珀尔方程,就能够比较正确的表示种群增长的规律;通过描述捕食与被捕食两个种群相克关系的洛特卡-沃尔泰拉方程,从理论上说明:农药的滥用,在毒杀害虫的同时也杀死了害虫的天敌,从而常常导致害虫更猖獗地发生等。
还有一类更一般的方程类型,称为反应扩散方程的数学模型在生物学中广为应用,它与生理学、生态学、群体遗传学、医学中的流行病学和药理学等研究有较密切的关系。60年代,普里戈任提出著名的耗散结构理论,以新的观点解释生命现象和生物进化原理,其数学基础亦与反应扩散方程有关。
由于那些片面的、孤立的、机械的研究方法不能完全满足生物学的需要,因此,在非生命科学中发展起来的数学,在被利用到生物学的研究领域时就需要从事物的多方面,在相互联系的水平上进行全面的研究,需要综合分析的数学方法。
多元分析就是为适应生物学等多元复杂问题的需要、在统计学中分化出来的一个分支领域,它是从统计学的角度进行综合分析的数学方法。多元统计的各种矩阵运算,体现多种生物实体与多个性状指标的结合,在相互联系的水平上,综合统计出生命活动的特点和规律性。
生物数学中常用的多元分析方法有回归分析、判别分析、聚类分析、主成分分析和典范分析等。生物学家常常把多种方法结合使用,以期达到更好的综合分析效果。
多元分析不仅对生物学的理论研究有意义,而且由于原始数据直接来自生产实践和科学实验,有很大的实用价值。在农、林业生产中,对品种鉴别、系统分类、情况预测、生产规划以及生态条件的分析等,都可应用多元分析方法。医学方面的应用,多元分析与电脑的结合已经实现对疾病的诊断,帮助医生分析病情,提出治疗方案。
系统论和控制论是以系统和控制的观点,进行综合分析的数学方法。系统论和控制论的方法没有把那些次要的因素忽略,也没有孤立地看待每一个特性,而是通过状态方程把错综复杂的关系都结合在一起,在综合的水平上进行全面分析。对系统的综合分析也可以就系统的可控性、可观测性和稳定性作出判断,更进一步揭示该系统生命活动的特征。
在系统和控制理论中,综合分析的特点还表现在把输出和状态的变化反馈对系统的影响,即反馈关系也考虑在内。生命活动普遍存在反馈现象,许多生命过程在反馈条件的制约下达到平衡,生命得以维持和延续。对系统的控制常常靠反馈关系来实现。
生命现象常常以大量、重复的形式出现,又受到多种外界环境和内在因素的随机干扰。因此概率论和统计学是研究生物学经常使用的方法。生物统计学是生物数学发展最早的一个分支,各种统计分析方法已经成为生物学研究工作和生产实践的常规手段。
概率与统计方法的应用还表现在随机数学模型的研究中。原来数学模型可分为确定模型和随机模型两大类如果模型中的变量由模型完全确定,这是确定模型;与之相反,变量出现随机性变化不能完全确定,称为随机模型。又根据模型中时间和状态变量取值的连续或离散性,有连续模型和离散模型之分。前述几个微分方程形式的模型都是连续的、确定的数学模型。这种模型不能描述带有随机性的生命现象,它的应用受到限制。因此随机模型成为生物数学不可缺少的部分。
60年代末,法国数学家托姆从拓扑学提出一种几何模型,能够描绘多维不连续现象,他的理论称为突变理论。生物学中许多处于飞跃的、临界状态的不连续现象,都能找到相应的跃变类型给予定性的解释。跃变论弥补了连续数学方法的不足之处,现在已成功地应用于生理学、生态学、心理学和组织胚胎学。对神经心理学的.研究甚至已经指导医生应用于某些疾病的临床治疗。
继托姆之后,跃变论不断地发展。例如塞曼又提出初级波和二级波的新理论。跃变理论的新发展对生物群落的分布、传染疾病的蔓延、胚胎的发育等生物学问题赋予新的理解。
上述各种生物数学方法的应用,对生物学产生重大影响。20世纪50年代以来,生物学突飞猛进地发展,多种学科向生物学渗透,从不同角度展现生命物质运动的矛盾,数学以定量的形式把这些矛盾的实质体现出来。从而能够使用数学工具进行分析;能够输入电脑进行精确的运算;还能把来自名方面的因素联系在一起,通过综合分析阐明生命活动的机制。
总之,数学的介入把生物学的研究从定性的、描述性的水平提高到定量的、精确的、探索规律的高水平。生物数学在农业、林业、医学,环境科学、社会科学和人口控制等方面的应用,已经成为人类从事生产实践的手段。
数学在生物学中的应用,也促使数学向前发展。实际上,系统论、控制论和模糊数学的产生以及统计数学中多元统计的兴起都与生物学的应用有关。从生物数学中提出了许多数学问题,萌发出许多数学发展的生长点,正吸引着许多数学家从事研究。它说明,数学的应用从非生命转向有生命是一次深刻的转变,在生命科学的推动下,数学将获得巨大发展。
当今的生物数学仍处于探索和发展阶段,生物数学的许多方法和理论还很不完善,它的应用虽然取得某些成功,但仍是低水平的、粗略的、甚至是勉强的。许多更复杂的生物学问题至今未能找到相应的数学方法进行研究。因此,生物数学还要从生物学的需要和特点,探求新方法、新手段和新的理论体系,还有待发展和完善。
20xx年高考数学命题预测之立体几何
【编者按】近几年高考立体几何试题以基础题和中档题为主,热点问题主要有证明点线面的关系,如点共线、线共点、线共面问题;证明空间线面平行、垂直关系;求空间的角和距离;利用空间向量,将空间中的性质及位置关系的判定与向量运算相结合,使几何问题代数化等等。考查的重点是点线面的位置关系及空间距离和空间角,突出空间想象能力,侧重于空间线面位置关系的定性与定量考查,算中有证。其中选择、填空题注重几何符号语言、文字语言、图形语言三种语言的相互转化,考查学生对图形的识别、理解和加工能力;解答题则一般将线面集中于一个几何体中,即以一个多面体为依托,设置几个小问,设问形式以证明或计算为主。
20xx年高考中立体几何命题有如下特点:
1.线面位置关系突出平行和垂直,将侧重于垂直关系。
2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现。
3.多面体及简单多面体的概念、性质多在选择题,填空题出现。
4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点。
此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题
数学学习方法10
初中数学是一个整体。初二的难点最多,初三的考点最多。相对而言,初一数学知识点虽然很多,但都比较简单。很多同学在学校里的学习中感受不到压力,慢慢积累了很多小问题,这些问题在进入初二,遇到困难(如学科的增加、难度的加深)后,就凸现出来。
现在,有一部分同学就是对初一数学不够重视,在进入初二后,发现跟不上老师的进度,感觉学习数学越来越吃力。究其原因,主要是对初一数学的基础性,重视不够。我们这里先列举一下在初一数学学习中经常出现的几个问题:
1、对知识点的理解停留在一知半解的层次上;
2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力;
3、解题时,小错误太多,始终不能完整的解决问题;
4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏;
5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点;
以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。相反,如果能够打好初一数学基础,初二的学习只会是知识点上的增多和难度的增加,在学习方法上同学们是很容易适应的。
数学学习方法11
因式分解的方法
1.十字相乘法
(1)把二次项系数和常数项分别分解因数;
(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;
(3)确定合适的十字图并写出因式分解的结果;
(4)检验。
2.提公因式法
(1)找出公因式;
(2)提公因式并确定另一个因式;
①找公因式可按照确定公因式的方法先确定系数再确定字母;
②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;
③提完公因式后,另一因式的项数与原多项式的项数相同。
3.待定系数法
(1)确定所求问题含待定系数的一般解析式;
(2)根据恒等条件,列出一组含待定系数的方程;
(3)解方程或消去待定系数,从而使问题得到解决。
知识点1:一元二次方程的基本概念
1、一元二次方程3x2+5x-2=0的常数项是-2。
2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。
3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。
4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。
知识点2:直角坐标系与点的位置
1、直角坐标系中,点A(3,0)在y轴上。
2、直角坐标系中,x轴上的任意点的横坐标为0。
3、直角坐标系中,点A(1,1)在第一象限。
4、直角坐标系中,点A(-2,3)在第四象限。
5、直角坐标系中,点A(-2,1)在第二象限。
知识点3:已知自变量的值求函数值
1、当x=2时,函数y=的值为1。
2、当x=3时,函数y=的值为1。
3、当x=-1时,函数y=的值为1。
知识点4:基本函数的概念及性质
1、函数y=-8x是一次函数。
2、函数y=4x+1是正比例函数。
3、函数是反比例函数。
4、抛物线y=-3(x-2)2-5的开口向下。
5、抛物线y=4(x-3)2-10的对称轴是x=3。
6、抛物线的顶点坐标是(1,2)。
7、反比例函数的图象在第一、三象限。
知识点5:数据的平均数中位数与众数
1、数据13,10,12,8,7的平均数是10。
2、数据3,4,2,4,4的众数是4。
3、数据1,2,3,4,5的中位数是3。
知识点6:特殊三角函数值
1.cos30°=。
2.sin260°+cos260°=1。
3.2sin30°+tan45°=2。
4.tan45°=1。
5.cos60°+sin30°=1。
知识点7:圆的基本性质
1、半圆或直径所对的圆周角是直角。
2、任意一个三角形一定有一个外接圆。
3、在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
4、在同圆或等圆中,相等的圆心角所对的弧相等。
5、同弧所对的圆周角等于圆心角的一半。
6、同圆或等圆的半径相等。
7、过三个点一定可以作一个圆。
8、长度相等的两条弧是等弧。
9、在同圆或等圆中,相等的圆心角所对的弧相等。
10、经过圆心平分弦的直径垂直于弦。
知识点8:直线与圆的位置关系
1、直线与圆有公共点时,叫做直线与圆相切。
2、三角形的外接圆的圆心叫做三角形的外心。
3、弦切角等于所夹的弧所对的圆心角。
4、三角形的内切圆的圆心叫做三角形的内心。
5、垂直于半径的直线必为圆的切线。
6、过半径的外端点并且垂直于半径的直线是圆的切线。
7、垂直于半径的直线是圆的切线。
8、圆的切线垂直于过切点的半径。
概念
把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.
旋转三要素:旋转中心、旋转方面、旋转角
2、旋转的性质:
(1)旋转前后的两个图形是全等形;
(2)两个对应点到旋转中心的距离相等
(3)两个对应点与旋转中心的连线段的夹角等于旋转角
3、中心对称:
把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.
这两个图形中的对应点叫做关于中心的对称点.
4、中心对称的性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.
(2)关于中心对称的两个图形是全等图形.
5、中心对称图形:
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
数学学习方法12
1、一本书
就是教科书,这是基础的基础,但是被中等生最忽视的。笔者高中时,先看教科书再做题,所以往往同学做到第5题,我才刚开始,但当我做了20题时,反过来发现同学做到第17题,这就是磨刀不误砍柴工。最后不仅省时,而且比同学多巩固了书本知识,然后从书本原理到题目及从题目到原理走了一个来回,培养了以理论解决实际问题的能力,提高了以不变应万变的能力。一句话,省时又高效。为摆脱题海打下了基础。
2、两方法
1)找到已知与求解的“桥梁”。主要针对中等题及难题,利用已知,推一步或几步,完成转化,从求解往后推几步,看看还缺什么,再去回忆脑袋里的知识点及解过的经典题,把已知与求解的差距补上,这个就是“桥梁”原理。
2)有些题按上述方法还遇到困难,可能需要另辟蹊径,如从定义出发或需要再审视已知条件,可能还未用尽已知条件或有些暗含的已知条件未挖掘出来。
3、三步骤
1)先看教科书,真正搞懂课本例题,并做课后练习(虽然看上去很简单,但是实质上就是要你检查自己是否真的掌握这些基本知识点。),
2)利用历年高考真题, 这些题很有价值,先掩着答案,根据你之前课本学的基础内容,尝试自己亲自动手做一下,再对答案,明白其原理,真正弄懂它,看看能否举一反三,可问老师及同学,也可请家教,最后达到触类旁通。
3)同步练习,必须紧跟课程,不能赖下来的,一步一个脚印去做。
数学知识点较多,容易忘记,但以上的步骤你都能做到的话,那么就不那么容易遗忘,即使忘记,你也可以翻阅以前的内容重新巩固一遍。
4、四层次
1)基本知识点。含概念、定义、定理、公式等,这是基础,这个不过关,其他免谈。笔者平时先看教科书,就是这个道理。--这部分,虽然重要,但笔者辅导不作重点,只是检查与提醒,因为可自学及问自己老师同学。会这个的人太容易找到了。
2)数学思想与数学技能。数学思想如方程函数思想、数形结合思想、对称思想、分类讨论思想,化归思想;数学技能如配方、待定系数法等。笔者由于这方面强,故多年不做题或见到陌生题均不慌,因为这些思想能力是深入骨髓的。
3)数学模型与中间结论。数学模型就是具体题目的解题套路,中间结论可使学生减少解题步骤,加快解题速度,减少出错机会。这些有了2数学思想与数学技能,就能自己推导出来,但要注意总结与积累。
4)特殊解题技巧。这个要求以上3方面都较强,聪明加灵感,平时善于总结与归纳,看透事物本源,熟能生巧,触类旁通。故对中等生不作过高要求,所谓可遇而不可求。笔者对高考实考试卷的选择与填空,特别是选择,有相当部分,有的试卷甚至一半以上可在题读完后,几秒得出正确答案。凭的就是这个本事。
数学学习方法13
一、改进学习方法,要有一个良好的学习习惯
良好的学习方法是长期、系统积累的过程,一个人只有不断地接受新知识,不断地产生疑问,不断地总结,才能不断地提高。应通过与老师、同学平时的交流,逐步地总结出一般性的学习规律,包括:制定计划、课前预习、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。
在课堂上应注意培养听课的好习惯。听是主要的,把老师讲的关键部分听懂,而且重点听老师对问题的分析过程,听的时候注意思考,分析问题,但是光听不记或光记不听,必然会顾此失彼,因此适当的记笔记,领会老师课上的意图和精神。在课堂、课外练习中应注意培养写作业的习惯,作业不仅要书写工整,而且还要有条理,这样可以培养逻辑能力。同时作业必须独立完成,培养一种独立思考的好习惯
二、提高课堂效率的四点建议
1.了解知识的形成过程理解其内涵,切忌死记硬背。
数学的概念、定义、公式、定理等都是数学的基础,这些知识的形成过程容易被忽视。事实上,这些知识的形成过程正是数学能力的培养过程。一个定理的证明,往往是新知识的发现过程,在掌握知识的过程中,促进了能力的发展。如反函数概念如何形成?构造性的定义给出了求反函数的方法和步骤及互为反函数其图象的对称关系。
2.有问题及时问,并做总结和记录
在课堂上,老师都会提问,有时还伴随着问题的讨论,对于典型问题,带有普遍性的问题必须及时解决,不能把问题遗留下来,甚至积累下来,发现问题应及时解决,遗留问题要及时解决。
3.学会总结技巧方法能够形成自己的解题思路
要合理选择简捷的运算途径,这不仅是迅速运算的需要,也是运算准确性的需要,运算的步骤越大,出错的可能性也就越大。因而根据问题的条件和要求,合理地选择简捷的运算途径,不但是提高运算能力的关键,也是提高其它数学能力的有效途径。如给定两个集合如何构成映射,能构成多少个映射?如何构成函数,能构成多少个函数等。
4.平时勤思考多锻炼自己的思维
学会把抽象思维形象化具体化是数学学习的一个能力。数学学科担负着培养运算能力、逻辑思维能力、空间想象能力以及运用所学知识分析问题、解决问题的重任,它的特点是具有高度的抽象性、逻辑性与广泛的应用性,对能力的要求较高。数学能力只有在数学思想方法不断应用中才能得到培养和提高。
三、学会数学复习的归纳总结
1.重视基础
重视基本概念、基本理论,并强化记忆;“举一反三,触类旁通”,对典型例题重点掌握,揣摩命题者的意图,归纳全面的解题方法。只有积累一定的典型习题才能保证解题方法的准确性、简捷性和完备性;认真做好练习题,采用循环交替、螺旋式推进的方法,避免出现对基本知识、基本方法遗忘的现象。
2.从宏观把握知识整体
认识课本知识间的横向联系,了解各部分内容在高考中所占的分值、地位和难易程度,有针对性地复习、梳理重点内容,突破自己的薄弱环节,力求从宏观上把握高中数学的知识体系,建立自己的解题方法体系和思维体系。
3.掌握高中常用的数学思想方法
高中数学学习过程中所接触到的数学思想方法一般分为三类:第一类是用于解题的具体操作性的方法,如配方法、换元法、消元法、待定系数法、判别式法、错位相减法、迭代法、割补法、特值法等;第二类则是用于指导解题的逻辑性的方法,如综合法、分析法、反证法、类比法、探索法、归纳法、解析法等;第三类则是在数学学习过程中形成的对于数学解题甚至于对于其它问题的解决都具有宏观指导意义的数学思想方法,如函数思想、方程思想、数形结合思想、分类与整合思想、化归与转化思想等。复习中要关注它们的应用,形成学以致用的习惯。
4.进行解题后的再思考
多思考自己的不足,为什么初次解题时没有想到。差在哪,并作深刻总结而且要做记录解题后,要思考题中易混易错的地方,总结经验,提高辨析错误的能力。
5.错题本的存在
分清错误的原因:概念模糊、粗心大意、顾此失彼、图形画错、思路问题等等,要注意对错题的分析讲解,该题的引入语、解题的切入口、思路突破方法、解题的技巧、规范步骤及小结的讲解等等,并在错题的一边注释解题过程,找出做题时障碍产生的原因及根源的分析。整理错题集时,一定要有恒心和毅力,而且要多看多回顾多复习。不要在乎时间的多少,对于相关知识点的整理与总结,虽然工作繁杂,但其作用决不仅仅是明白了一道错题怎样求解这么简单,更重要的是通过整理错题本,你将学会如何学数学、如何研究数学,避免在以后的学习中出现类似的错误。
数学学习方法14
一、计算能力。
高中涉及到更多的内容,而计算是一项基本技能,对于初中时候的有理数的运算、二次根式的运算、实数的运算、整式和分式运算,代数式的变形等方面如果还存在问题,应该把部分再好好复习巩固一下。若计算频频出现问题,会成为高中学习的一个巨大的绊脚石。
二、反思总结。
很多同学进入高中后都会在学法上遇到很大的困扰。因为高中知识多,授课时间短,难度大,所以初中时候的一些学习方法在高中就不太适用了。对于高中的知识,不能认为“做题多了自然就会了”,因为到了高中没有那么多时间来做题,因此一定要找到一种更有效地学习方法 高中英语,那就是要在每次学习过后进行总结和反思。总结知识点之间的联系和区别,反思一下知识更深层的本质。三、预习高一的知识。新课程标准的高一第一学期一般是讲必修1和必修4两本。目前高中采取模块教学,每个学期2个模块。
必修1的主要内容是三部分:
集合:数学中最基础,最通用的数学语言。贯穿整个高中以及现代数学都是以集合语言为基础的。一定要学明白了。
函数:通过初中对具体函数的学习,在其基础上研究任意函数研究其性质,如单调性,奇偶性,对称性,周期性等。这一部分相对有一定的难度,而且与初中的联系比较紧。基本初等函数:指数和对数的运算以及利用前面学到的函数性质研究指数函数,对数函数和幂函数。这部分知识有新的计算,并且应用前面的函数性质学习新的函数。
必修4的主要内容也分为三部分:
三角函数:对于初中的角的概念进行扩充,涉及到三角函数的运算以及三角函数的性质。
平面向量:这是数学里面一种新的常用的工具,通过向量的方法可以方便的解决很多三角函数的问题。这种方法与平面直角坐标系的联系比较多,但与函数有所不同,应注意区别与联系。
三角恒等变换:这部分主要是三角的运算,属于公式很多,运算量也比较大的内容。统观上述高一第一学期的内容可见知识非常多,而且这些知识在高考中的比重也比较大,因此若在高一一开始不能学好,对于后面的学习是会有一定影响的。因此,要考虑到初高中知识的差异,对自己的学法进行改进,最后要适当的预习一下新高一的内容,以期很快的适应高中的数学学习。
高一新生学习攻略:如何做好数学笔记
从初中升入高中,在数学学习上有一个飞跃,其表现在所学内容更多、难度更大、思维要求更高。因而学好高中数学,要求学生对数学问题的理解和处理要更具系统化、理性化和成熟化。
学好高中数学,在学习方法上要有所转变和改进。而做好数学笔记无疑是非常有效的环节,善于做数学笔记,是一个学生善于学习的反映。那么,数学笔记究竟该记些什么呢?
一 记内容提纲
老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清晰地呈现在黑板上。同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹、清晰完整。
二 记疑难问题
将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的,一些问题对部分学生来说,是属于疑难问题,由于课堂上来不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和掌握,不致出现知识的断层、方法的缺陷。
三 记思路方法
对老师在课堂上介绍的解题方法和分析思路也应及时记下,课后加以消化,若有疑惑,先作独立分析,因为有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后及时与老师商榷和探讨。勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。在这基础上,若能主动钻研,另辟蹊径,则更难能可贵。
四 记归纳总结
注意记下老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找规律,融会贯通课堂内容都很有作用。同时,很多有经验的老师在课后小结时,一方面是承上归纳所学内容,另一方面又是启下布置预习任务或点明后面所要学的内容,做好笔记可以把握学习的主动权,提前作准备,做到目标任务明确。
五 记体会感受
数学学习是智、情、意、行的综合。数学学习过程伴随着积极的情感体验、意志体验过程,记下自己学习过程的感受,可以用来更好地调控自己的学习行为。譬如,一道运算很繁杂的习题,依靠坚强的意志获得解题成功后,可在旁边写上“功夫不负有心人”等自勉的语句,用来激励自己。
六 记错误反思
学习过程中不可避免地会犯这样或那样的错误,“聪明人不犯或少犯相同的错误”,记下自己所犯的错误,并用红笔醒目地加以标注,以警示自己,同时也应注明错误成因,正确思路及方法,在反思中成熟,在反思中提高。
俗话说:“好记性不如烂笔头”。坚持做好数学笔记,对于学好数学将会大有裨益。
数学学习方法15
1、做好预习:单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。
2、认真听课:听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记记方法,记疑点,记要求,记注意点。
3、认真解题:课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。
4、及时纠错:课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
5、学会总结:冯老师说:数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。
6、学会管理:管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。
老师称,这可是大考复习时最有用的资料,千万不可疏忽。目前初中学生学习数学存在一个严重的问题就是不善于读数学教材,他们往往是死记硬背。重视阅读方法对提高初中学生的学习能力是至关重要的。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细地读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读懂,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。提高听课质量要培养会听课,听懂课的习惯。注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由听会转变为会听。有疑必问是提高学习效率的有效办法学习过程中,遇到疑问,抓紧时间问老师和同学,把没有弄懂,没有学明白的知识,最短的时间内掌握。建立自己的错题本,经常翻阅,提醒自己同样的错误不要犯第二次。从而提高学习效率。
怎样才能打好初一的数学基础
(1)细心地发掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了单个字母或数字也是代数式。二是,对概念和公式一味的死记硬背,缺乏与实第2页际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
(2)总结相似的类型题目
这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到任它千变万化,我自岿然不动。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。 总结归纳是将题目越做越少的最好办法。
【数学学习方法】相关文章:
数学的学习方法09-27
数学与应用数学的学习方法04-24
数学学习方法08-16
奥数学习方法11-08
数学学习方法06-25
有关数学的学习方法08-31
数学高效的学习方法12-30
学习数学的学习方法01-04
初中数学的学习方法11-16
小学数学的学习方法11-24