高中数学学习方

时间:2024-07-12 17:53:05 学习方法 我要投稿
  • 相关推荐

(精品)高中数学学习方法15篇

  在平日的学习、工作和生活里,每个阶段都有需要学习的内容,掌握一定的学习方法,学习效率就会提高很多。为了帮助大家正确高效的学习,以下是小编为大家整理的高中数学学习方法,仅供参考,大家一起来看看吧。

(精品)高中数学学习方法15篇

高中数学学习方法1

  经过这么多天的学习,对新课程有了更深层次的理解,从理论上得到了充实和提升,开拓了我们的视野。作为高一数学教师,新课程的实施对我们来说更有着非同一般的意义。因此在培训之后我们进行了仔细的讨论,下面是我的一些心得和体会。

  一、数学课改的背景:

  高中是人生发展的重要阶段,时代的发展对人才培养的规格和目标提了更高的要求。因此,高中课程应能更好地适应时代发展、人的发展和社会的发展。而教材则是数学课程实施的重要组成部分。选择和使用合适的教材是完成教学内容和实现教学目标的重要前提。高水平、高质量的教材对教师、学生、教学过程以及教学结果都起着积极的作用。

  二、数学课程“内容标准”解读:

  高中数学课分必修和选修。必修课程有5个模块组成;

  数学1:集合;函数概念与基本初等函数i

  数学2:立体几何初步;平面解析几何初步

  数学3:算法初步;统计;概率

  数学4:基本初等函数ii;平面上的向量;三角恒等变换

  数学5:解三角形;数列;不等式

  选修课程有4个系列。必修课程内容确定的原则是:满足未来公民的基本数学要求,为学生进一步的学习提供必要的数学准备。选修课程内容确定的原则是:满足学生的兴趣和对未来发展的需求,为学生进一步学习、获得较高数学素养奠定基础。基于这种教学内容安排,应该说高一教学任务最为繁重,要学完四本书,难点集中,周期太长;若高一未打好基础,等到高三复习时恶补是无济于事的。所以如何处理好高一学年的教学,在整个高中阶段显得尤为重要。

  三、对教学的思考:

  1、更新观念,转变角色。

  数学属于全体大众,教师和学生是平等的。因此,教师要由课程知识的施与者变为教育学意义上的交往者。教师要改变使原来内涵丰厚、品位高雅的课程异化为以复制系统知识为目的的大工业生产式的流水作业的做法,不能再以课程知识的拥有者和权威自居。应将“教程”转变为“学程”,将“知识施与”转变为“教育交往”。教师作为全人格和全心灵的交往者,既不视学生为承纳知识的容器,也不被学生视作获取知识的对象和手段,应具有民主理念与生本理念。教师要从“一切为了学生的终身发展”出发,在课程的每个环节中都体现出以生为本、“全人”发展的课程理念。

  2、不断实践,转变教学行为。

  在实际教学过程中,由于受到传统教学思想以及考试压力的影响,我们在贯彻新课程上面可能或多或少打些折扣,这是我们需要警惕的,只有不断实践,努力将新课程理念运用到实践中,才能不断地提高学生各方面的能力。首先在课堂上,教师的教学应创造一个合适的学习环境,使学生能够主动地建构他们的知识,促使学生在学习过程中,实现新旧知识的有机结合。在整个教学过程和学习过程中,教师是组织者、指导者、促进者。如:创设生活情景,激发学生学习数学的热情。当数学和学生的现实生活密切结合时,数学才是活的、富有生命力的,才能激发学生学习和解决数学问题的兴趣。同时,在现实问题的解决中表现数学概念,掌握数学方法,形成数学思想,更能促进在以后遇到相关问题时自觉地动用有关数学经验去思想、去解决问题。还有如:多做数学实验,让学生在动手实践中学习。以往的数学课堂教学过于强调接受学习,死记硬背,机械训练,而很少让学生动手,实践。实践证明,若要让学生积极参与,勤于实践,数学上的很多问题还是能够得到很好解决的。特别是在应用题的教学中尤为显得重要,学生普遍反映:听来的容易忘,看到的记不住,只有亲自动手才能学得会。

  3、注重形成过程,突出激励机制。

  新课程强调过程,强调学生探索新知的经历和获得新知体验。

  对于教师而言,课堂教学就应该充分地考虑和体现数学知识的形成过程,把开展探究性学习和研究作为贯穿于课堂教学始终的一条线。同时要不断的鼓励学生、激励学生,使学生增强学习数学的信心。教师要从学生的全面发展和终身发展着眼,使评价不仅要关注学生的学业成绩,而且要发现发展学生的潜能,要将评价重点由终结性转向过程性与形成性,引导学生不仅求“知”,更要求“德”,不但“学好”,更要“好学”,帮助学生认识自我,建立自信,教师要以自己其独具的眼力和襟怀来悦纳学习个体之间的多样性与差异性,要以心灵拥抱心灵,以激情点燃激情,放飞生命的灵思和才情。

  四、存在的一些问题:

  1、关于初高中教材内容的衔接问题。

  现行初中教材中,对于一些常用的知识和方法有许多遗留的内容,如韦达定理、分母有理化、十字相乘法以及三角形四心问题等,而这些内容是我门在高中阶段必须用到的知识点。对于这些内容应如何处理?应该安排何时补充这些内容比较合适?是放在所有新课之前单独讲授还是在讲授有关内容时穿插进来?这些都是在新高一教学中不可避免会碰到的问题。

  2、关于新教材该如何把握难度的问题。

  新课标实施不久,对新教材的了解和把握还有所欠缺,课程内容要求高,难点集中,习题配置较少;信息技术要求太高,师生负担较重。加上对应的参考资料比较缺乏,现存的资料对教材难度的把握不甚明确,如新旧教材中对于函数定义域和值域这块内容的要求有较大的差别。因此在对教学和考试中的难度的确定的尺度不易把握。

  3、关于课时安排较紧的问题。

  新课程标准要求高一学生修完一、二、三、四册必修课程,实际需要的总课时必然超过可以给定的总课时,给总的教学任务的完成增加了很大的难度,希望各领导予以关注总而言之,通过本次课改培训,使我们认识到,我们的数学教学应依据课程标准的要求,以人的`发展和社会进步为需求,使每个学生获得必要的数学基础知识和基本技能,提高空间想象、抽象概括、运算求解、推理论证、数据处理等基本能力。使学生具有一定的数学视野,逐步认识到数学的科学价值、应用价值和文化价值,形成批判性的思维习惯。学习方式的转变是本次课程改革的显著特征,改变原有的单纯接受方式的学习方式,建立和形成旨在充分调动、发挥学生主体性的探究式学习方式,自然成为教学改革的核心任务。专家认为,从教育心理学角度来讲,学生的学习方式有接受和发现两种:在接受学习中,学习内容是以定论的形式直接呈现出来的,学生是知识的接受者;在发现学习中,学习内容是以问题间接呈现出来的,学生是知识的发现者,两种学习方式都有其存在的价值,彼此是相辅相成的关系。转变学习方式就是把学习过程中的发现、探究等认识活动凸显出来,使学习过程更多地成为学习发现问题、提出问题、解决问题的过程。因此,强调发现学习、探究学习、研究学习,成为本次课改的亮点。从推进素质教育的角度来讲,转变学习方式,要以培养创新精神和实践能力为主要目的,换言之,要构建旨在培养创新精神和实践能力的学习方式和教学方式,要注意培养学生的科学思维品质,鼓励学生对书本的质疑和对教师的超越,赞赏富有个性化的理解和表达。要积极引导学生从事实验活动和实践活动,培养学生乐于动手、勤于实践的意识和习惯。

高中数学学习方法2

  高中数学该怎么学

  数学首先要找到方法,要不然学起来会非常被动。数学要想学好,最重要的就是会自学,就是说要学会自己去学习,课前先预习好相关内容,做好习简单习题,课上集中精力听讲,争取把课堂内的知识都消化了,课后再巩固一遍所学知识,复习完公式再去做题,这样一个流程下来以后,一些基础的题目都是没有问题的。

  数学学会一些简单题目以后,还要在不断做题中发现自己的不足,看哪些题目还没弄明白,然后及时去复习知识点和公式,学会以后再做题巩固,争取把稍难一些的题目也做会。其实做数学题是有规律可言的,只要掌握了这些规律和技巧,按部就班的去做题,遇到不会的题目就自己研究,多思考,套公式,画图分析,总会有解决的办法,即使还不会也可以等老师讲或提前问老师,效果更好。

  高一数学学习方法

  1.高中数学学习方法—听好课在课堂上集中注意力是想要学好一门科目的关键,高中数学课也不例外。数学也是一门极难学懂的课程,所以学生在课上课下都要花费大量的时间,数学也不是一门只要掌握好方法就能学懂的学科,所以在高中数学的学习上,一定要好好听课,汲取老师的经验,转化为自己知识,才能把握住一些技巧性的东西,从而提高自己数学的分数。

  2.高中数学学习方法—勤做题相信很多学生在高三的时候都经历了疯狂做题的阶段,每天几套几套的卷子,做的学生心理疲惫。但是题海战术面对我国现在高中生的普遍水平还是很管用的。如果你不像其他学霸那样有着过人的天分,那么在高中数学的学习上,就一定要多做题、勤做题。把每个你不会的题型都多做几遍,做的多了,数学的水平自然也就上去了。

  3.高中数学学习方法—会归纳在数学这门学科中,最重要的是学会归纳。比如把你不会的知识、不懂的知识、易错的知识都整理到不同的本子上,碰到类似的题就归纳进去,这样对于高中数学的学习也是非常有用的。很多学生也是运用了这样的.方法学习高中数学,不仅是数学这门学科,在其他学科的学习上也要注意运用归纳的方法。这样才能时常纠正自己的错误,并在高中数学上取得更好的成绩。

  高一数学学习建议

  不乱买辅导书

  很多高中生认为想要学好数学,就要多做题。所以就买了很多辅导书来做,但是对于数学成绩提高的效果却不是很明显。其实,学好数学和辅导书并没有直接的关联。有做辅导书的时间,高中生不妨好好整理一下自己的数学卷子,把卷子上的难题研究透了,比什么辅导书都有用。

  整理错题

  很多高中生都没有整理错题的习惯,其实用好错题本是很重要的。高中生可以把自己做错的题和不明白的题,都整理在错题本上,不懂的问题可以请教老师和同学,之后把正确的答案和思路都记录好。

  记笔记

  高中生不要以为只有文科才需要记笔记,数学同样可以记笔记,笔记中可以记录一些老师总结的方法和技巧,也可以记录一些公式的记忆方法和概念之类的。这本笔记和错题本就是高中生考试之前的重要复习资料了,没事儿的时候也可以翻出来看看。

高中数学学习方法3

  一、常见现象:

  1、高一新生大都自我感觉良好,认为自己的学习方法是成功的。自己能考上全市重点高中,就说明了自己在学习上有一套。自己初中怎样学,高中还怎样学,就一定能成功。不知道改进学习方法。

  2、有的学生甚至认为,刚上高一,适当对自己放松一下,奖励一下自己前一段的苦学,一两个月以后再追,也不会出现什么问题。这种不求上进,甚至釜底抽薪的想法,大错特错。

  3、新生面临着新的学习任务,缺少迎难而上的思想准备。暑假期间,疯玩疯闹。基础知识大滑坡,基本技能大退步,头脑时常出现空白。学习时跟不上教学的进度与要求。

  4、很多学生对高中阶段的学习特点,缺少全面准确的了解,更缺少系统的学习方法。

  二、学习问题:

  1、教学进度太快了,讲的东西太多了,课外作业太难了。有很多学生作业中的困难越来越多。有的学生,一看见数学作业就想哭,但是你现在先别哭,三天以后你再回头看,当初的困难根本就不值得一哭。真正值得你大哭一场的是每天都这样,真正的度日如年!!!

  2、期中考试以后,就有很多同学面临了人生空前的失败,于是惊慌失措,痛苦不堪。有四分之一,甚至更多的学生会在期中考试时,数学不及格,情绪低落,从此对学习就丧失了信心。

  3、还有的学生,老是自我感觉不错,但是每次考试成绩都是一踏糊涂。也有的学生,校内考试分数很高,一旦区、市统考,成绩就一落千丈。

  三、数学学习的八大方法:

  1、先看笔记,后做作业。有的高一学生感到,老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢其原因在于,学生对教师所讲的内容,还没能达到教师所要求的深层次理解。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看,这是好学生与差学生的最大区别。如果平时不注意,学生就会感到学习越来越吃力。

  2、做题之后,加强反思。学生一定要明确,现在正做着的题,一定不是考试的题目。而是要运用现在正做着题目的解题思路与方法。因此,要把自己做过的每道题加以反思,总结一下自己的收获。要总结出:这是一道什么内容的题,用的是什么方法,做完作业,回头看,价值很大。要做到知识成片,问题成串。要看看自己做对了没有;还有什么别的解法;题目处于知识体系中的什么位置;解法的本质什么;题目中的已知与所求能否互换,能否进行适当增删改进。有了以上五个回头看,学生的解题能力才能与日俱增。投入的'时间虽少,效果却很大,事半功倍。

  有的学生认为,要想学好数学,只要多做题,功到自然成。其实不然。一般来说,做的题太少,很多熟能生巧的问题就会无从谈起。因此,应该适当地多做题。但是,只顾钻入题海,堆积题目,在考试中一般也是难有作为的。打个比喻:有很多人,因为工作的需要,几乎天天都在写字,写了几十年的字,写字的水平也没提高,还是原来的水平。多写字不等于是受到了写字的训练!要把提高当成自己的目标,要把自己的活动合理、系统的组织起来,要善于总结和反思,水平才能提高。

  3、主动复习,总结提高。学生自己进行章节总结是非常重要的。初中时是老师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且还是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。那么怎样做章节总结呢

  ①、要把课本,笔记,区单元测验试卷,校周末测验试卷,都从头到尾阅读一遍。要一边读,一边做标记,标明哪些是过一会儿要摘录的。要养成一个习惯,在读材料时随时做标记,告诉自己下次再读这份材料时的阅读重点。长期保持这个习惯,学生就能把厚书读成薄书,积累起最适合自己的、独特的复习材料。

  ②、把本章节的内容一分为二,一部分是基础知识,一部分是典型问题。分类复习,不要遗漏。

  ③、在基础知识的疏理中,要罗列出所学的所有定义、定理、法则、公式。要做到同时能从正反两方面对其进行应用。

  ④、把重要的、典型的各种问题进行编队。找出它们之间的关系,总结出问题的来龙去脉。一定要能居高临下地看到问题的结构和变化。不然的话,陷入题海中,是徒劳无益的。这一点,是提高高中数学水平的关键所在。

  ⑤、总结那些尚未归类的问题,详细标明,及时突破。

  ⑥、找一份适当的试卷进行计时测验。然后再对照答案,查漏补缺。

  4、重视改错,错不重犯。一定要重视改错工作,做到错不再犯。初中数学教学采取的方法是,把各种可能的错误,都告诉学生注意,只要有一人出过错,就要提出来,让全体同学引为借鉴。这叫一人有病,全体吃药。高中数学课没有那么多时间,除了少数几种典型错,其它错误,不能一一顾及。只能谁有病,谁吃药。如果学生有病,而自己却又忘记吃药,没人会一再地提醒他应该注意些什么。如果能及时改错,那么错误就可能转变为财富,成为不再犯这种错误的预防针。但是,如果不能及时改错,这个错误就将形成一处隐患。有的学生认为,自己考试成绩上不去,是因为自己做题太粗心,其实并非如此。打一个比方。比如说,学习开汽车:新手对汽车的机械原理、设计原因、操作规程都了解的很清楚,也不能自己直接上车,因为还缺乏必要的练习。仅凭一两次能正确地完成任务,并不能说明永远不出错。练习的数量不够,往往是学生出错的真正原因。如果学生的基础知识千疮百孔,隐患无穷,那么今后的数学肯定难以学好。

  5、积累资料,随时整理。要注意积累复习资料。把课堂笔记,练习,区单元测验,各种试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,复习资料才能越读越精,一目了然。

  6、课外读物,精挑慎选。初中学生学数学,如果不注意看课外读物,一般地说,不会有什么太大的影响。高中则大不相同。高中数学考的是学生解决新题的能力。作为一名高中生,如果只是围着自己的老师转,不论老师的水平有多高,必然都会存在着很大的局限性。因此,要想学好数学,必须打开一扇门,适当的看看外面的世界。当然,物极必反,也不要自立门户,另起炉灶。一旦脱离校内教学和自己的老师的教学体系,也必将事倍而功半。

  7、配合老师,主动学习。高一新生的学习主动性太差,这是一个普遍存在的问题。小学生,常常是完成了作业就可以尽情地欢乐。初中生基本上也是如此,听话的孩子就能学习好。高中则不然,作业虽多,但是只做作业,是绝对不够的,因为老师不可能面面俱到,给每位同学具体指明。因此,高中新生必须提高自己学习的主动性。准备向将来的大学生的学习方法过渡。

  8、合理规划,步步为营。高中的学习是非常紧张的。每个学生都要投入自己的几乎全部的精力。要想能迅速进步,就要给自己制定一个较长远的切实可行的学习目标和计划,例如第一学期的期末,自己计划达到班级的平均分数,第一学年,达到年级的前三分之一,如此等等。此外,还要给自己制定学习计划,详细地安排好自己的零星时间,并及时作出合理的调整。

高中数学学习方法4

  课前预习

  一个老生常谈的话题,也是提到学习方法必将的一个,话虽老,虽旧,但仍然是不得不提。虽然大家都明白该这样做,但是真正能够做到课前预习的能有几人,课前预习可以使我们提前了解将要学习的知识,不至于到课上手足无措,加深我们听课时的理解,从而能够很快的吸收新知识。

  记笔记

  这里主要指的是课堂笔记,因为每节课的时间有限,所以老师将的东西一般都是精华部分,因此很有必要把它们记录下来,一来可以加深我们的理解,好记性不如烂笔头吗,二来可以方便我们以后复习查看。如果对课堂讲述的知识不理解的同学更应该做笔记,以便课下细细琢磨,直到理解为止。

  课后复习

  同预习一样,是个老生常谈的话题,但也是行之有效的方法,课堂的几十分钟不足以使我们学习和消化所学知识,需要我们在课下进行大量的练习与巩固,才能真正掌握所学知识。

  涉猎课外习题

  想要在数学中有所建树,取得好成绩,光靠课本上的知识是远远不够的,因此我们需要多多涉猎一些课外习题,学习它们的'解题思路和方法,如果实在不能理解,可以问问老师或者同学。

  学会归类总结

  学习数学要记得东西很多,尤其是数学公式,而且知识还很散,通常解一道题需要各种公式的配合,如果单纯的记忆每个公式,不但增加记忆量,而且容易忘,此时我们必须学会归类总结,把经常搭配使用的公式等总结在一起记忆,这样会大大的减少我们的记忆量,同时提高我们做题效率。

  建立纠错本

  我们在学习数学的时候可能会经常因为同样一类题目而失分,自己也十分懊恼,其实有办法可以解决这个问题,就是建立纠错本,帮我们经常会出错的题目都集中在一起(当然只要是做错过得都可以记录上),然后空闲的时候看看,考试之前再看看,这样考试的时候出现同类题目再出错的几率就降低好多。

  写考试总结

  写考试总结是一个好习惯,考试总结可以帮我们找出学习之中不足之处,以及我们知识的薄弱环节,从而及时的弥补不足,以及以后的学习方向。

高中数学学习方法5

  数学被很多学生认为是一门很难的学科,高中数学更是如此,但是数学作为三大主课之一,所占的分量自是不清,很多学生也明白如果数学学不好的话想要考上理想的大学是天方夜谭,但是苦于无学习之法,那么高中数学都有哪些学习方法呢?

  方法/步骤

  课前预习:一个老生常谈的话题,也是提到学习方法必将的一个,话虽老,虽旧,但仍然是不得不提。虽然大家都明白该这样做,但是真正能够做到课前预习的能有几人,课前预习可以使我们提前了解将要学习的知识,不至于到课上手足无措,加深我们听课时的理解,从而能够很快的吸收新知识。

  记笔记:这里主要指的是课堂笔记,因为每节课的时间有限,所以老师将的东西一般都是精华部分,因此很有必要把它们记录下来,一来可以加深我们的理解,好记性不如烂笔头吗,二来可以方便我们以后复习查看。如果对课堂讲述的知识不理解的同学更应该做笔记,以便课下细细琢磨,直到理解为止。

  课后复习:同预习一样,是个老生常谈的话题,但也是行之有效的方法,课堂的几十分钟不足以使我们学习和消化所学知识,需要我们在课下进行大量的练习与巩固,才能真正掌握所学知识。

  涉猎课外习题:想要在数学中有所建树,取得好成绩,光靠课本上的知识是远远不够的,因此我们需要多多涉猎一些课外习题,学习它们的解题思路和方法,如果实在不能理解,可以问问老师或者同学。

  学会归类总结:学习数学要记得东西很多,尤其是数学公式,而且知识还很散,通常解一道题需要各种公式的配合,如果单纯的记忆每个公式,不但增加记忆量,而且容易忘,此时我们必须学会归类总结,把经常搭配使用的公式等总结在一起记忆,这样会大大的减少我们的记忆量,同时提高我们做题效率(因为公式都绑在一起了吗)。

  建立纠错本:我们在学习数学的时候可能会经常因为同样一类题目而失分,自己也十分懊恼,其实有办法可以解决这个问题,就是建立纠错本,帮我们经常会出错的题目都集中在一起(当然只要是做错过得都可以记录上),然后空闲的时候看看,考试之前再看看,这样考试的'时候出现同类题目再出错的几率就降低好多。

  写考试总结:写考试总结是一个好习惯,考试总结可以帮我们找出学习之中不足之处,以及我们知识的薄弱环节,从而及时的弥补不足,以及以后的学习方向,关于考试总结怎么写可以参考小编的“考试总结怎么写”这篇经验。

  培养学习兴趣:又是一个老话题了,今天小编好像讲了很多“废话”,虽然情况确实也是如此,但是小编仍然要讲,兴趣是最好的老师(又是废话),只有有了兴趣,才会自主自发的进行学习,学习的效率才会提高。当然建立兴趣不是一件容易的事情,怎样才能对数学产生兴趣还需自己去发掘,如果实在不能产生兴趣,只有掌握以上学习方法了。

高中数学学习方法6

  高中数学学习方法简介:

  首先截取了一段别人的总结,和我的看法很一致,其中红色部分为我的见解。

  高中数学不想初中那样按照老师教得套路一直走到底就可以不题目做出来,但高中数学也不是没有规律可循的。我看到以为高中的老教师说过,高中数学一般的题目也就20道左右,只要掌握了其中的技巧就可以灵活自如,一般的题目也就没有问题了。学数学,重在自己要思考和随时整理,学过了那些内容,其核心的.知识是什么,做过哪些题,都涉及那些知识点,用过哪些技巧?有时候老师会讲,但有时候老师不会,所以要自己多加思考。思考无果,可以问老师。

  我不喜欢题海战术,但是又必须做题,任何想不做题不练习就有好成绩的想法都是不切实际的。数学就是要多想多看多练。

高中数学学习方法7

  高中数学学习方法:

  1、认识高中数学的特点。

  高中数学是数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维,而高中数学语言表达抽象。

  2、正确对待学习中遇到的新困难和新问题。

  在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的.精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。

  3、要将“以老师为中心”转变为“以自己为主体,老师为主导”的学习模式。

  数学不是靠老师教会的,而是在老师引导下,靠自己主动思维活动去获取的,学习数学就是要积极主动地参与教学过程,并经常发现和提出问题,而不能依着老师的惯性运转,被动地接受所学知识和方法。

  4、要养成良好的个性品质。

  要树立正确的学习目标,培养浓厚的学习兴趣和顽强的学习毅力,要有足够的学习信心,实事求是的科学态度,以及独立思考、勇于探索的创新精神。

  5、要养成良好的预习习惯,提高自学能力。

  课前预习而“生疑”,“带疑”听课而“感疑”,通过老师的点拨、讲解而“悟疑”、“解疑”,从而提高课堂听课效果。预习也叫课前自学,预习的越充分,听课效果就越好;听课效果越好,就能更好地预习下节内容,从而形成良性循环。

  6、要养成良好的审题习惯,提高阅读能力。

  审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到目要“宁停三分”,“不抢一秒”,要在已有知识和解题经验基础上,译字逐句仔细审题,细心推敲,切忌题意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,将隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破点,从而形成解题思路。

高中数学学习方法8

  这门课我还是比较痛心的。其实从高一开始我的数学就不算好的,只能说还不错,中等的水平吧。高三一年,考试挺多的,一直在130左右,最后几次考试也都能到135的水平,可惜最后高考发挥真的很恶心,很失常,有一个题在考场上硬是没想到怎么做,下来两分钟之后就会了。

  我想说的是,其实我对数学,尤其是高中文科数学,觉得没有多困难。知识点就是那些,考试也就是那么些题型。关键就看各位同学是不是真能踏踏实实搞清楚教材上的东西,能认真听老师讲课,讲典型的题型,是不是能好好做作业,做一些其他的题,做高考真题,是不是能多思考,多研究一下这个题目的思路了。

  教材,方法,做题,总结,思考,等等,都是至关重要的。题海战术对数学,我相信是管用的,不过也得结合每个人自身情况来做。

  教材至关重要!教材的重要性我都已经不想再提及了,实在是最基本的。作为一个学生,虽然教材也许会枯燥些,但是里面都是必须学好的东西。所有基础差的同学,没有别的可说的,都是,教材上的基础概念,公式,例题,习题,所有的都必须搞懂,没得偷懒,否则你会知道后果的!

  如果说一个宏观的我怎么学数学的话,那就是如下内容了。

  从高一开始,我就有笔记本,这个是必需的。老师上课的板书从来没有漏过一个知识点,没有漏掉过一个例题,都记在笔记本上。而且一定要上课的时候就听懂老师的思路,即使有不懂的,下课一定要去找老师提问。

  笔记本上,基础概念,公式,例题,老师让我们课上做的题,都要记下来。其实目的很简单,以后好复习,而且写一遍有助于记忆。

  下课之后,在每天做作业之前,我都会把笔记本拿出来先看一遍,今天主要什么知识,什么例题,主要的思路方法是什么,然后再去做作业。

  其实作业里的很多题都不超出老师上课所涉及到的题型知识。有些确实难的,一定要自己先思考怎么做,实在做不出来就标注一下,拿答案来看。搞清楚自己到底卡在哪个地方了,然后把这个题当作一个典型记下来,当作一个方法的示例。

  另外就是自己做的练习了。我当时每一门课都有一本辅导书。或者是中学教材全解或者是王后雄或者是其他的,都是我自己亲自到书店去挑的,自己觉得好才去买。我是以自己学习情况来做题的,会的题做一两个就行了。如果是不会的,就一定会好好做,仔细研究题目整个的思路。后来发现考试里其实也就是很多见过的题型,方法都有共通之处。

  高考复习,我就是很乖地跟着老师走。然后做老师的练习。然后自己做高考题,做别的模拟题。查缺补漏,多总结做题的方法。有些题型一开始我也不知道该怎么想,后来做多了,再加上老师一轮复习总结过方法,看看例题,自己慢慢就开窍了,看到之后也不会害怕了。

  一定要有自信,不可以有抵触心理,不可以厌恶一门科目,否则你绝对学不好。我并不喜欢数学,但是我为了高考是一定会把它好好学好的。得数学者得天下,这句话没错!

  关于所有的考试和练习:

  请大家珍惜每一次练习,考试。

  这种时候都是对自己这一阶段学习的一次检查。是非常必要的,查缺补漏都靠这个了。

  不要太过于在乎分数。

  每次做完一定要找出自己的问题,是基础不牢,还是粗心大意,还是方法没有掌握等等。在困惑的时候一定要和老师好好交流。

  一定记住,不要把问题归结于什么心态不好,不在状态这种虚无缥缈的原因上,一定要找到最基础最根本的原因!否则你就永远晕头转向,不知道该朝哪个方向努力!

  关于作弊,提前查答案等等不诚实的行为。我只能说,出来混的,迟早要还的,不信的话,高考见吧。浪费掉的是你每次练习检验自己的机会,浪费掉的是自己这么多年来的学习,你自己的心里也会不安的!

  在一轮复习中,老师会按照知识点复习。复习中,老师在课堂上会讲一些经典的例题和一些必会的基础题型。这些题型请大家务必做好做透,将它的方法吃透。上完课后做作业前,请大家把这些题再仔细看一遍,之后再开始做作业,事半功倍。

  请大家在每个知识点结束时争取将这个知识点的问题解决。不说难题都没有问题,至少基本的概念,方法要会。

  在做难题的时候,要注意方法。其实数学也是有方法可找的。就比如说解析几何,椭圆这类型的题,是联立还是点差法,在每次做完题后,根据题目设问的类型要进行反思和整理。

  考试的时候,大家务必拿到的分,就是选择除最后一道,填空除最后一道,大题的前几道,这些题拿到了,上100肯定没问题。那些难题,再提升提升,120以上应该是可以的。

  做数学题一定要练速度,在做作业的时候也不要拖沓。但是记住数学用掉你多少时间都不过分,数学的确对于文科生来说挺重要的,如果你的文数学的.好会非常沾光的。

  上面是原来写的,很简略。现在就每个大的知识点谈谈我的看法。

  函数:

  这是最开始的一个内容。我高一学的也不能说有多好。考试分数也不算高,但是庆幸的是教材上的概念公式啥的搞得很清楚。所以在一轮复习的时候也就比较仔细去听这个章节。

  其实函数要求掌握的就是函数的性质以及几个特别的函数。题型也都大同小异。我就是跟着老师的复习脚步走。我们的复习书是《步步高》,我按照老师要求先填好最前面的知识结构,然后看给出的例题以及解析,然后按照老师要求一个个去做题。不会的题就标出来,每次考试前就拿着这本书去复习。

  像函数,我当时在学校,在家里,在外面的辅导机构,很多题型做了很多遍,很多经典的题型做了一遍又一遍,方法自然就很熟悉了。

  导数:

  这一块看似很难。刚开始做大题的时候,导数大题永远做不好,最后一问永远不知道是什么方法,即使老师都已经教过几次了。

  后来就觉得,这样下去不行,绝对不可以给自己设下限制,不能潜意识里觉得做不了,一定要试着去做。就从一个很普遍的求范围的题下手了。看过去其实还是不敢下手去做,但后来就模仿老师的方法,将要求的那个a放到一边,其他的都放到另外一边。然后对另外一边的式子求导,求范围,进而求出a的范围。后来这么一做发现,也不过如此,没有难到哪里去。

  后来就是在做题的时候,积极吸收老师讲过的方法,结合题目的情况,多试几次。哪怕这次做不对,就记下来,以后做的时候又多了一条思路。

  [标签:高考数学,数学学习方法,学习方法]

高中数学学习方法9

  高一数学学好的方法

  首先对高一新生来说,学好数学,首先要抱着浓厚的兴趣去学习数学,积极展开思维的翅膀,主动地参与教育全过程,充分发挥自己的主观能动性,愉快有效地学数学。

  其次要掌握正确的学习方法。锻炼自己学数学的能力,转变学习方式,要改变单纯接受的学习方式,要学会采用接受学习与探究学习、合作学习、体验学习等多样化的方式进行学习,要在教师的指导下逐步学会“提出问题—实验探究—开展讨论—形成新知—应用反思”的学习方法。这样,通过学习方式由单一到多样的转变,我们在学习活动中的自主性、探索性、合作性就能够得到加强,成为学习的主人。

  最后,要有意识地培养好自己个人的心理素质,全面系统地进行心理训练,要有决心、信心、恒心,更要有一颗平常心。

  高中数学提分方法

  第一要养成预习的.习惯。这是我多年学习数学的一个好方法,因为提前把老师要讲的知识先学一遍,就知道自己哪里不会,学的时候就有重点。当然,如果完全自学就懂更好了。

  第二是书后做练习题。预习完不是目的,有时间可以把例题和课后练习题做了,检查预习情况,如果都会做说明学会了,即使不会还能再听老师讲一遍。

  第三个步骤是做老师布置的作业,认真做。做的时候可以把解题过程直接写在题目旁边,比如选择题和填空题,因为解答题有很多空白处可写。这样做的好处就是,老师讲题时能跟上思路,不容易走神。

  第四个学好数学的方法是整理错题。每次考试结束后,总会有很多错题,对于这些题目,我们不要以为上课听懂了就会做了,看花容易绣花难,亲手做过了才知道会不会。而且要把错的题目对照书本去看,重新学习知识。

  第五个提高数学成绩的方法是查缺补漏。在做了大量习题以后,数学成绩有所提高,但还是存在一些不会做的题目,我们要善于发现哪些类型的题目还存在盲区,然后逐一击破。

  高中数学学习方法

  数学的考察主要还是基础知识,难题也不过是在简单题的基础上加以综合。所以课本上的内容很重要的,如果课本上的知识都不能掌握,就没有触类旁通的资本。

  对课本上的内容,上课之前最好能够首先预习一下,否则上课时有一个知识点没有跟上老师的步骤,下面的就不知所以然了,如此恶性循环,就会开始厌烦数学,对学习来说兴趣是很重要的。课后针对性的练习题一定要认真做,不能偷懒,也可以在课后复习时把课堂例题反复演算几遍,毕竟上课的时候,是老师在进行题目的演算和讲解,学生在听,这是一个比较机械、比较被动的接受知识的过程。也许你认为自己在课堂上听懂了,但实际上你对于解题方法的理解还没有达到一个比较深入的程度,并且非常容易忽视一些真正的解题过程中必定遇到的难点。“好脑子不如烂笔头”。对于数理化题目的解法,光靠脑子里的大致想法是不够的,一定要经过周密的笔头计算才能够发现其中的难点并且掌握化解方法,最终得到正确的计算结果。

  其次是要善于总结归类,寻找不同的题型、不同的知识点之间的共性和联系,把学过的知识系统化。举个具体的例子:高一代数的函数部分,我们学习了指数函数、对数函数、幂函数、三角函数等好几种不同类型的函数。但是把它们对比着总结一下,你就会发现无论哪种函数,我们需要掌握的都是它的表达式、图像形状、奇偶性、增减性和对称性。那么你可以将这些函数的上述内容制作在一张大表格中,对比着进行理解记忆。在解题时注意函数表达式与图形结合使用,必定会收到好得多的效果。

  最后就是要加强课后练习,除了作业之外,找一本好的参考书,尽量多做一下书上的练习题(尤其是综合题和应用题)。熟能生巧,这样才能巩固课堂学习的效果,使你的解题速度越来越快。

高中数学学习方法10

  高中的学习生活其实不只是要努力,正确的学习方法在学习生活中起着很大的作用。现在我就高中的学习方法给你做些介绍啊,希望对你的学习生活有所作用!我知道你数学不是很好,所以呢,我着重数学。

  你们女生老是说高中数学难,其实是那么回事吗?在高考中,数学只有二十一题,选择和填空有十五题,然后再六个大题。所以在高中你只有学会这二十一题就行。

  在试卷的第一题你会碰到虚数的有关内容,虚数无非是虚数有理化,实部和虚部,注意实部和虚部都是数哦!之所以这个虚放在第一题就是要你拿到那个五分,一定不要客气哦!在试卷的第二题你将会看到简单逻辑连接词的有关试题,其实这一部分的题目还是比较简单的了,只要掌握了课本上的就足够了。关于前面的两题我就不想多讲了。还有集合内容我也觉得不是高考的重点。至于统计我也就不详细的说了,我所讲的是三角函数与解三角形,函数与导数,立体几何,解析几何,数列,向量。

  一:三角函数与解三角形

  这个知识点考的还是比较多的,大概有17分。

  1、你需要掌握正余弦,正切的图像,及其的有关图像变化。在高考中的图像题可能就是

  这方面的。关于图像的上下平移,左右平移,图像的性质。三角函数是个周期函数,这在学习的过程中可能要花不少时间,其实当你不清楚的时候就画画图像,在图像上找到你所要的东西,当然你也要学会求它的周期,这些你都要熟练掌握。其实三角函数的图像无非是关于图形的变换,只要有耐心和一定的基本功,这部分的题目解决来不是什么难事!

  2、三角函数的诱导公式,正余弦的和差展开式,二倍角公式,半角公式。这一部分内容

  除了必要的练习还要有效的记忆。其中诱导公式是比较多的,你可以先集中记忆,然后在练习中加以巩固,达到熟练的目的。注意,你要找到这些公式的异同点找到自己的方法记忆。比如在做题的时候你看到了平方那么你的第一感觉就是看看能不能用半角公式,从半角公式形式上看它比较适合降次。多找找这样的特点有助于你记忆和应用。

  3、快速有效的掌握AB形式。在高考中,这样的题型有着很大的分量。你要做的就是在

  什么时候要用这种形式和又好又快的解决这类问题。这种形式我们不难发现它必须是在同角的时候才可以用,至于熟练运用就要靠你平时的努力了!

  4、解三角形。这一块要熟练得掌握正余弦定理。无论是正弦还是余弦都必须知道三角形

  的三个条件,注意有时我们用正弦的时候发现有两个值,那么一定要注意是不是要舍去一个啊,要经常用大角对大边的定理进行检验。

  二:函数与导数

  1、基本初等函数。包括一次,二次,指数,对数等函数。对于二次函数的题目我们要注

  意的是四要素:开口方向,对称轴,截距,根的分布。在习题中你要时常考虑这四个因素,要寻找到题目中的隐藏条件,大多的题目至少有一个隐藏条件,找到以后你就可以化繁为简。还有,不要怕分类讨论,其实分类讨论只要部遗漏部重复就行,不用太在意那个,难的分类讨论并不是每个人都会。指数函数你要知道它的图像和性质,比如a的范围啊,单调性,值域啊。对数函数和指数函数有共同点,只要掌握了两种图像你就可以掌握他们了。还有,对于基本初等函数的基本运算你还是要多加练习的,比如指数函数和对数函数的几个运算公式你一定要熟练掌握,这是你解决复杂题目的基础。

  2、导数的运用。导函数和原函数要能够区别,首先你要明确导函数是用来干嘛的,导函

  数就是用来研究原函数的单调性的一种方式,不能将二者混淆。大部分的导数运用最终都会转化到二次函数上去,所以在有空的时候对二次函数要加强练习。

  三:立体几何。

  立体几何中最重要的就是线、面的关系。有线面的平行、垂直关系,面面的平行、垂直关系。通常在高考中考察的立体几何就是要证明线面的位置关系以及面面的位置关系。我们在解决此类的题目的时候要数练掌握定理和性质,对于定理我们比较熟悉,而对于性质的运用不是很好,所以我们要加强性质的运用。在解决较复杂的立体几何题目中你多画辅助线,也许辅助线会给你许多的益处,为你的解题提供方便之门。

  四:解析几何。

  解析几何在高考中的难度比较大,所以只要掌握常规方法就足够了。

  1、直线与圆的位置关系,圆与圆的位置关系。这里运用的最多的就是点到直线的距离来判断他们的位置关系。

  2、椭圆、双曲线、抛物线。椭圆在高考中出现的频率还是比较高的,形式以直线与椭圆

  的位置为主,所以对于常规的圆锥曲线的题目你要掌握常规的解法,比如点差法和代入法啊,这些常规的'方法一定要掌握。双曲线和抛物线在前面的客观题还是考的比较多。主要还是离心率考察的比较多,这就要从已知条件出发,将所给的条件划到关于ac上最常见的就是将离心率平方,找到ac的关系。

  五:数列。

  等差数列的通项公式、求和公式,等比数列的通项公式、求和公式要熟练运用。数列类的题目大部分要你先求通项,然后再求和。

  1、你要对求通项和求和的进行分类,找到其中的方法,比如求通项的时候你就要想到利

  用和式进行做差,这样就能够解决。当题目给的是递推公式的时候,那么你就要进行构造新的数列,这个新数列不是等比就是等差。在有的题目已经给出了新的构造的数列据比较简单了,只要凑下就好了。

  2、在求和的时候你就要会公式发,错位相减法,倒序相加,列项相消法,分组求和等方法。

  不过你要分清他们的使用范围,比如错位相减法就是解决等差数列和等比数列的组合的复杂的数列。因为求和的方法不过只有这么多,实在不行的话就一个个的试。

  六:向量。

  向量在高考中的分量不是很重,所以你只要掌握向量的基本运算。向量的基本运算方法分为几何法和坐标法,几何法就是利用三角形定理和平行四边形定理,这些在选择填空题中常见,另外,充分的运用三点共线原理进行解决问题很重要。坐标法运用的比较多,对于向量的坐标法的基本运算你也要好好的掌握,在几何法解决有点苦难的时候你就要想到坐标法,建系,设点坐标。

高中数学学习方法11

  高中数学学习方法:其实就是学习解题

  高中数学是应用性很强的学科,学习数学就是学习解题。搞题海战术的方式、方法固然是不对的,但离开解题来学习数学同样也是错误的。其中的关键在于对待题目的态度和处理解题的方式上。

  1、首先是精选题目,做到少而精。

  只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

  2、其次是分析题目。

  解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。

  3、最后,题目总结。

  解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:

  ①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。

  ②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。

  ③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。

  ④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。

  【摘要】“高中数学多边形内角和公式”数学公式是解题的要点,要灵活运用,希望下面公式为大家带来帮助:

  设多边形的边数为N

  则其内角和=(N-2)*180°

  因为N个顶点的N个外角和N个内角的和

  =N*180°

  (每个顶点的一个外角和相邻的内角互补)

  所以N边形的外角和

  =N*180°-(N-2)*180°

  =N*180°-N*180°+360°

  =360°

  即N边形的外角和等于360°

  设多边形的边数为N

  则其外角和=360°

  因为N个顶点的N个外角和N个内角的和

  =N*180°

  (每个顶点的一个外角和相邻的内角互补)

  所以N边形的内角和

  =N*180°-360°

  =N*180°-2*180°

  =(N-2)*180°

  即N边形的内角和等于(N-2)*180°

  如何学好数学

  首先和敏捷对于来说固然重要,但良好的可以把效果提高几倍,这是先天因素不可比拟的。学好首先要过的是关。任何事情都有一个由量变到质变的循序渐进的积累过程。

  一.。不等于浏览。要深入了解内容,找出重点,难点,疑点,经过思考,标出不懂的,有益于抓住重点,还可以培养自学,有时间还可以超前学习。

  二.听讲。核心在。1。以听为主,兼顾记录。2。注重过程,轻结论。

  3.有重点。4。提高听课。

  三.。像演电影一样把课堂,整理笔记,

  四.多做练习。1。晚上吃饭后,坐到书桌时,看数学最适合,2。做一道数学题,每一步都要多问个别为什么,不能只满足于课堂上的灌输式传授和书本上的简单讲述,要想提高必须要一步一步推 高中历史,一步一步想,每个过程都必不可少,3。不要粗心大意,4。做完每一道题,要想想为什么会想到这样做,建立一种条件发射,关键在于每做一道题要从中得到东西,错在哪,5。解题都有固定的套路。6还有大胆的夸奖自己,那是树立信心的关键时刻,

  五.总结。1。要将所学的知识变成知识网,从大主干到分枝,清晰地深存在脑中,新题想到老题,从而一通百通。2。建立错误集,错误多半会错上两次,在有意识改正的情况下,还有可能错下去,最有效的应该是会正确地做这道题,并在下次遇到同样情况时候有注意的意识。3。周末再将一周做的题回头看一番,提出每道题的思路方法。4有问题一定要问。

  六.考前复习,1。前2周就要开始复习,做到心中有数,否则会影响发挥,再做一遍以前的错题是十分必要的,据说有一个同学平时只有一百零几,离只有一个月,把以前错题从头做一遍,最后他数学居然得了147分。2。要重视基础,

  另外,听老师的话,勤学苦练不可少,没有捷径,要乐观,有毅力,要有决心,还要有耐心,学数学是一个很长的过程,你的努力于回报往往不能那么尽如人意的'成正比,甚至会有下坡路的趋势,但只要坚持下去,那条成绩线会抬起头来,一定能看到光明。

  《希腊文集》中的方程问题

  《希腊文集》是一本用诗歌写成的问题集,主要是六韵脚诗。荷马著名的长诗《伊丽亚特》和《奥德赛》就是用这种诗体写成的。

  《希腊文集》中有一道关于毕达哥拉斯的问题。毕达哥拉斯是古希腊著名数学家,生活在公元前六世纪。问题是:一个人问:“尊敬的毕达哥拉斯,请告诉我,有多少学生在你的学校里听你讲课?”毕达哥拉斯回答说:“一共有这么多学生在听课,其中 在学习数学, 学习音乐, 沉默无言,此外,还有3名妇女。”

  我们用现代方法来解:设听课的学生有x人,根据题目条件可列出方程

  这是一个一元一次方程。

  移项,得

  答:毕达哥拉斯有28名学生听课。

  《希腊文集》中还有一些用童话形式写成的数学题。比如“驴和骡子驮货物”这道题,就曾经被大数学家欧拉改编过。题目是这样的:

  “驴和骡子驮着货物并排走在路上。驴不住地往地埋怨自己驮的货物太重,压得受不了。骡子对驴说:‘你发什么牢骚啊!我驮得的货物比你重。假若你的货物给我一口袋,我驮的货就比你驮的重一倍,而我若给你一口袋,咱俩驮和的才一样多。’问驴和骡子各驮几口袋货物?”

  这个问题可以用方程组来解:

  设驴驮x口袋,骡子驮y口袋。则驴给骡子一口袋后,驴还剩x-1,骡子成了y+1,这时骡子驮的是驴的二倍,所以有

  2(x-1)=y+1 (1)

  又因为骡子给驴一口袋后,骡子还剩下y-1,驴成了x+1,此时骡子和驴驮的相等,有

  x+1=y-1 (2)

  (1)与(2)联立,有

  这是一个二元一次议程组。

  (1)-(2)得 x-3=2,

  x=5 (3)

  将(3)代入(2),得y=7。

  答:驴原来驮5口袋,骡子原来驮7口袋。

  《希腊文集》有一道名的题目“爱神的烦恼”。这里有许多神的名字,先介绍一下:爱罗斯是希腊神话中的爱神,吉波莉达是赛浦路斯岛的守护神。9位文艺女神中,叶芙特尔波管简乐,爱拉托管爱情诗,达利娅管吉剧,特希霍拉管舞蹈,美利波美娜管悲剧,克里奥管历史,波利尼娅管颂歌,乌拉尼娅管天文,卡利奥帕管史诗。

  这道题也是用诗歌形式写在的:

  爱罗斯在路旁哭泣,

  泪水一滴接一滴。

  吉波莉达向前问道:波利尼

  “是什么事情使你如此伤悲?

  我可能够帮助你?”

  爱罗斯回答道:

  “九位文艺女神

  不知来自何方

  把我从赫尔康山采回的苹果,

  几乎一扫而光,

  叶芙特尔波飞快地抢走十二分之一,

  爱拉托抢得更多——

  七个苹果中拿走一个。

  八分之一被达利娅抢走,

  比这多一倍的苹果落入特希霍拉之手。

  美利波美娜最是客气,

  只取走二十分之一。

  可又来了克里奥,

  她的收获比这多四倍。

  还有三位女神,

  个个都不空手,

  30个归波利尼娅,

  120个归乌拉尼娅,

  300个归卡利奥帕。

  我,可怜的爱罗斯。

  爱罗斯原有多少个苹果?还剩下50个苹果。”

  设爱罗斯原来有x个苹果,则6位文艺女神抢走的苹果分别是 。

  可列出方程

  答:爱罗斯原来有苹果3360个。

  选自《中学生数学》20xx年5月下

  20xx高考数学复习三步曲

  编者按:小编为大家收集了“20xx高考数学复习三步曲”,供大家参考,希望对大家有所帮助!

  今年高考文理科的数学试卷总体难度不大,为师生所接受。文科试卷难易程度适中,尤其是填空题和选择题难度不大,解答题难易程度和试题坡度安排都比较合理,有利于考生的发挥,也有利于指导以后的学习。

  理科试卷容易题、中等题和难题比例恰当,注重逻辑思维能力和表达能力(运用数学符号)以及数形结合能力的考查,部分试题新而不难,开放题有所体现,把能力的考查落到实处。但我个人认为,今年试卷对高中数学的主干知识的核心内容考查不到位,但不等于我们今后可以完全不重视。

  抓基础:不变应万变

  把基础知识和基本技能落到实处。唯有如此才能以不变应万变。比如,文科第22题是一道经典题型,考查圆锥曲线上一点到定点距离,既考老师又考学生。所谓考老师是说这样的题型你讲过没有,是怎么讲的?学生的典型错误(以定点为圆心作一个与椭圆相切的圆,再利用判别式等于0)是怎么纠正?正确解法(转化为二次函数在某个区间上的最值)是怎么想到的?只有经过这样的教学环节,学生才能真正理解。所谓考学生是说你自己做错了,老师重点讲评了的经典问题,你掌握了没有?掌握的标准是能否顺利解答相应的变式问题。由于第(3)含有参数,需要分类讨论,能有效甄别考生的思维水平和运算能力。本题以椭圆(解析几何重点内容之一)为载体,考查把几何问题转化为代数问题的能力(这是解析几何的核心思想),以及含参数的二次函数求最值问题(也是代数中的重点和难点),一举多得。

  当然,可能会有人认为这道题形式不新,其实,要求考题全新既无必要,也不可能,只要有利于高校选拔和中学教学就好,不必过分求新、求异。

  理科的第22题相对较难,不少同学反映不好表述。若能从集合的包含关系这个角度考虑,则容易表述,部分考生是直接对两个数列进行分类,由于要用到一些多数学生不熟悉的整除知识,因而感到困难,无法下手。这就体现基础知识和基本技能的重要性。

  尽管今年理科试卷在知识点分布上有些不尽如人意,但复习不能受此影响,仍然要全面、扎实复习,不能留下知识点的死角,相应的技能、技巧要牢固掌握,思想方法都要总结到位,这样才能“不管风吹浪打,胜似闲庭信步”。

  破难题:提升应对力

  如何应对“题梗阻”?考试中遇到不会做的题目很正常,有些同学会因此影响临场发挥。考生进考场就像运动员进运动场,心理素质很重要,把心理辅导和答题技巧融于学习之中。在高三复习过程中,不仅要讲数学知识,同时还要训练学生的心理素质和培养学生的答题技巧,这样才能使学生在考场上应付裕如,出色发挥,考出好成绩。

  理科的22题第(2)卡住不少考生,耽误时间还影响心情,以致第(3)和后面第23题来不及或无心去做,其实,做第(3)题用不到第(2)的结论。而第23题是新编的开放性问题,首先要静心才能读懂题目,而读懂题目至少第(1)、(2)两题不难。要做到这些并不容易,不是临考前“先易后难”一句话学生就能做到,需要在平时教学过程中结合具体问题,训练学生的心理素质,提高其在解题过程中遇到困难时的应变能力,掌握应变策略,才能在考场上“敢于放弃”,从容跳过不会做的题或在解答题中跳步解答,把自己能做的题目先做对,把应得的分得到,这样考试总是成功的,无论分数高低。

  为何时间与成绩不成正比?高三数学就是大量解题,有些重点中学的优秀学生的高考成绩甚至不比高二时考分高,岂不是白学?其实,这是误解。数学讲究逻辑,问题从哪里来(已知),到哪里去(求证),中间有哪些沟沟坎坎(思维障碍),怎么克服(怎样进行等价转化),不仅是照葫芦画瓢的操作性(当然也是必要的)训练,更重要的是以数学知识为载体,让学生学会思考问题的方式方法,还要在解题后对问题作归纳总结,找出规律,有时还要把问题作适当推广,把学生的逻辑思维引到辩证思维。这样经过一年的高三数学学习,学生收获的不仅是分数,还有对人终生受用的思维品质的提高。

  重方法:培养好品质

  有些同学做了许多题,就是成绩提高不见提高,自己和家长都很纳闷。其实学习数学关键是要掌握方法,同时还要培养敢于做难题、新题的胆量和毅力。重复性操作的题目做再多,意义也不大。对待难题的态度是培养学生意志品质的好时机,不能轻易错过(当然也要因人而异)。有些同学往往认为只要弄懂思路,不必解到底。其实,这样的同学往往眼高手低,会而不对,考试成绩忽高忽低,原因在于某些细节处理不当,造成“一失足成千古恨”,事后以粗心搪塞过去。这就需要老师对学生深入了解,结合具体问题给予悉心指导,帮助学生找出真实原因,并制定改正错误的办法,这一过程表面上是帮助学生学会解题,实际上对学生意志品质的培养也就潜移默化地得到了落实。

  我们有理由相信,把解题和人的素质培养有机结合的高三数学教学,不仅能提高学生的解题能力,还能促使他们健康成长,让我们一起努力!

  以上就是为大家提供的“20xx高考数学复习三步曲”希望能对考生产生帮助,更多资料请咨询中考频道。

  生物数学概论

  生物数学是生物学与数学之间的边缘学科。它以数学方法研究和解决生物学问题,并对与生物学有关的数学方法进行理论研究。

  生物数学的分支学科较多,从生物学的应用去划分,有数量分类学、数量遗传学、数量生态学、数量生理学和生物力学等;从研究使用的数学方法划分,又可分为生物统计学、生物信息论、生物系统论、生物控制论和生物方程等分支。这些分支与前者不同,它们没有明确的生物学研究对象,只研究那些涉及生物学应用有关的数学方法和理论。

  生物数学具有丰富的数学理论基础,包括集合论、概率论、统计数学、对策论、微积分、微分方程、线性代数、矩阵论和拓扑学,还包括一些近代数学分支,如信息论、图论、控制论、系统论和模糊数学等。

  由于生命现象复杂,从生物学中提出的数学问题往往十分复杂,需要进行大量计算工作。因此,计算机是研究和解决生物学问题的重要工具。然而就整个学科的内容而论,生物数学需要解决和研究的本质方面是生物学问题,数学和电脑仅仅是解决问题的工具和手段。因此,生物数学与其他生物边缘学科一样通常被归属于生物学而不属于数学。

  生命现象数量化的方法,就是以数量关系描述生命现象。数量化是利用数学工具研究生物学的前提。生物表现性状的数值表示是数量化的一个方面。生物内在的或外表的,个体的或群体的,器官的或细胞的,直到分子水平的各种表现性状,依据性状本身的生物学意义,用适当的数值予以描述。

  数量化的实质就是要建立一个集合函数,以函数值来描述有关集合。传统的集合概念认为一个元素属于某集合,非此即彼、界限分明。可是生物界存在着大量界限不明确的模糊现象,而集合概念的明确性不能贴切地描述这些模糊现象,给生命现象的数量化带来困难。1965年扎德提出模糊集合概念,模糊集合适合于描述生物学中许多模糊现象,为生命现象的数量化提供了新的数学工具。以模糊集合为基础的模糊数学已广泛应用于生物数学。

  数学模型是能够表现和描述真实世界某些现象、特征和状况的数学系统。数学模型能定量地描述生命物质运动的过程,一个复杂的生物学问题借助数学模型能转变成一个数学问题,通过对数学模型的逻辑推理、求解和运算,就能够获得客观事物的有关结论,达到对生命现象进行研究的目的。

  比如描述生物种群增长的费尔许尔斯特-珀尔方程,就能够比较正确的表示种群增长的规律;通过描述捕食与被捕食两个种群相克关系的洛特卡-沃尔泰拉方程,从理论上说明:农药的滥用,在毒杀害虫的同时也杀死了害虫的天敌,从而常常导致害虫更猖獗地发生等。

  还有一类更一般的方程类型,称为反应扩散方程的数学模型在生物学中广为应用,它与生理学、生态学、群体遗传学、医学中的流行病学和药理学等研究有较密切的关系。60年代,普里戈任提出著名的耗散结构理论,以新的观点解释生命现象和生物进化原理,其数学基础亦与反应扩散方程有关。

  由于那些片面的、孤立的、机械的研究方法不能完全满足生物学的需要,因此,在非生命科学中发展起来的数学,在被利用到生物学的研究领域时就需要从事物的多方面,在相互联系的水平上进行全面的研究,需要综合分析的数学方法。

  多元分析就是为适应生物学等多元复杂问题的需要、在统计学中分化出来的一个分支领域,它是从统计学的角度进行综合分析的数学方法。多元统计的各种矩阵运算,体现多种生物实体与多个性状指标的结合,在相互联系的水平上,综合统计出生命活动的特点和规律性。

  生物数学中常用的多元分析方法有回归分析、判别分析、聚类分析、主成分分析和典范分析等。生物学家常常把多种方法结合使用,以期达到更好的综合分析效果。

  多元分析不仅对生物学的理论研究有意义,而且由于原始数据直接来自生产实践和科学实验,有很大的实用价值。在农、林业生产中,对品种鉴别、系统分类、情况预测、生产规划以及生态条件的分析等,都可应用多元分析方法。医学方面的应用,多元分析与电脑的结合已经实现对疾病的诊断,帮助医生分析病情,提出治疗方案。

  系统论和控制论是以系统和控制的观点,进行综合分析的数学方法。系统论和控制论的方法没有把那些次要的因素忽略,也没有孤立地看待每一个特性,而是通过状态方程把错综复杂的关系都结合在一起,在综合的水平上进行全面分析。对系统的综合分析也可以就系统的可控性、可观测性和稳定性作出判断,更进一步揭示该系统生命活动的特征。

  在系统和控制理论中,综合分析的特点还表现在把输出和状态的变化反馈对系统的影响,即反馈关系也考虑在内。生命活动普遍存在反馈现象,许多生命过程在反馈条件的制约下达到平衡,生命得以维持和延续。对系统的控制常常靠反馈关系来实现。

  生命现象常常以大量、重复的形式出现,又受到多种外界环境和内在因素的随机干扰。因此概率论和统计学是研究生物学经常使用的方法。生物统计学是生物数学发展最早的一个分支,各种统计分析方法已经成为生物学研究工作和生产实践的常规手段。

  概率与统计方法的应用还表现在随机数学模型的研究中。原来数学模型可分为确定模型和随机模型两大类如果模型中的变量由模型完全确定,这是确定模型;与之相反,变量出现随机性变化不能完全确定,称为随机模型。又根据模型中时间和状态变量取值的连续或离散性,有连续模型和离散模型之分。前述几个微分方程形式的模型都是连续的、确定的数学模型。这种模型不能描述带有随机性的生命现象,它的应用受到限制。因此随机模型成为生物数学不可缺少的部分。

  60年代末,法国数学家托姆从拓扑学提出一种几何模型,能够描绘多维不连续现象,他的理论称为突变理论。生物学中许多处于飞跃的、临界状态的不连续现象,都能找到相应的跃变类型给予定性的解释。跃变论弥补了连续数学方法的不足之处,现在已成功地应用于生理学、生态学、心理学和组织胚胎学。对神经心理学的研究甚至已经指导医生应用于某些疾病的临床治疗。

  继托姆之后,跃变论不断地发展。例如塞曼又提出初级波和二级波的新理论。跃变理论的新发展对生物群落的分布、传染疾病的蔓延、胚胎的发育等生物学问题赋予新的理解。

  上述各种生物数学方法的应用,对生物学产生重大影响。20世纪50年代以来,生物学突飞猛进地发展,多种学科向生物学渗透,从不同角度展现生命物质运动的矛盾,数学以定量的形式把这些矛盾的实质体现出来。从而能够使用数学工具进行分析;能够输入电脑进行精确的运算;还能把来自名方面的因素联系在一起,通过综合分析阐明生命活动的机制。

  总之,数学的介入把生物学的研究从定性的、描述性的水平提高到定量的、精确的、探索规律的高水平。生物数学在农业、林业、医学,环境科学、社会科学和人口控制等方面的应用,已经成为人类从事生产实践的手段。

  数学在生物学中的应用,也促使数学向前发展。实际上,系统论、控制论和模糊数学的产生以及统计数学中多元统计的兴起都与生物学的应用有关。从生物数学中提出了许多数学问题,萌发出许多数学发展的生长点,正吸引着许多数学家从事研究。它说明,数学的应用从非生命转向有生命是一次深刻的转变,在生命科学的推动下,数学将获得巨大发展。

  当今的生物数学仍处于探索和发展阶段,生物数学的许多方法和理论还很不完善,它的应用虽然取得某些成功,但仍是低水平的、粗略的、甚至是勉强的。许多更复杂的生物学问题至今未能找到相应的数学方法进行研究。因此,生物数学还要从生物学的需要和特点,探求新方法、新手段和新的理论体系,还有待发展和完善。

  20xx年高考数学命题预测之立体几何

  【编者按】近几年高考立体几何试题以基础题和中档题为主,热点问题主要有证明点线面的关系,如点共线、线共点、线共面问题;证明空间线面平行、垂直关系;求空间的角和距离;利用空间向量,将空间中的性质及位置关系的判定与向量运算相结合,使几何问题代数化等等。考查的重点是点线面的位置关系及空间距离和空间角,突出空间想象能力,侧重于空间线面位置关系的定性与定量考查,算中有证。其中选择、填空题注重几何符号语言、文字语言、图形语言三种语言的相互转化,考查学生对图形的识别、理解和加工能力;解答题则一般将线面集中于一个几何体中,即以一个多面体为依托,设置几个小问,设问形式以证明或计算为主。

  20xx年高考中立体几何命题有如下特点:

  1.线面位置关系突出平行和垂直,将侧重于垂直关系。

  2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现。

  3.多面体及简单多面体的概念、性质多在选择题,填空题出现。

  4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点。

  此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题

高中数学学习方法12

  很多学生以优异的数学成绩进入了向往已久的高中,但却有很多学生仍是以原来的思维和方法来学习高中数学,这往往造成了数学成绩的下滑。尽管很多学生仍很用功,但成绩却很不如意,并且在初三升入高中的学生中,都认为高中数学枯燥无味,感觉知识点多,学习数学的压力很大。所以在这里就初中数学和高中数学的区别和联系来给新高一学生和家长们提几点建议:

  一、初中数学形象化,便于学生理解,并且联系生活实际比较多。对于这些知识点,只要用心一些,很是比较容易把握的,运用起来也会比较自如。而高中数学相对来说则比较抽象,学生经常不能很好的把所学知识理解透彻,甚至进入理解误区,如此,便造成运用定理和公式不熟练或运用错误的现象。针对这些情况,建议家长由专业教师引导一下,深入浅出,为高中数学后续课程的学习打下坚实的基础;

  二、初中数学浅显化,学生只要认真思考,理解其所表达的意思。而高中很多知识点则较为隐晦,学生体会不到所表达的意思。比如:初中所学的二次函数,比较多的偏向于感性认识,学生们往往能较好地掌握,但是进入高中之后,高中数学对二次函数提出了新的更高的.要求,比较偏向于理性思维时,某些学生便会适应不过来。

  三、初中数学知识容量相对较小。总体而言,初中数学知识点较少,学生能够通过三年的系统学习,比较好地掌握。高中数学则知识点众多,而每个章节所包含的小知识点则更是繁杂,学生们则往往难以适应。

  综上,建议学生与家长以谨慎、认真的态度去对待初三升高中这一蜕变的阶段,因为这是我们迈进高中的第一步,只有第一步走踏实了,我们才能走过高中,踏进高考的大门!

高中数学学习方法13

  (1)、立足课本、抓好基础

  现在高考非常重视三角函数图像与性质等基础知识的考查,所以在学习中首先要打好基础。

  (2)三角函数的定义一定要清楚

  我们在学习三角函数时,老师就会强调我们要把角放在平面直角坐标系中去讨论。角的顶点放在坐标原点,始边放在X 的轴的正半轴上,这样再强调六种三角函数只与三个量有关:即角的终边上任一点的横坐标x、纵坐标y 以及这一点到原点的距离r 中取两个量组成的比值,这里得强调一下,对于任意一个α一经确定,它所对的每一个比值是唯一确定的,也就说是它们之间满足函数关系。并且三者的关系是,x2+y2=r2,x,y 可以任意取值,r 只能取正数。

  (3)同角的三角函数关系

  同角的三角函数关系可以分为平方关系:sin2α+cos2α=1、tan2α+1= sec2α、cotα2+1= csc2α,倒数关系:tanαcotα=1,商的关系:tanα=sinα/cosα等等,对于同角的'三角函数,直接用三角函数的定义证明比较容易,记忆也比较方便,相关角的三角函数的关系可以分为终边相同的角、终边关于x 轴对称的角、终边关于直线y=x 对称的角、终边关于y 轴对称的角、终边关于原点对称的角五种关系。

  (4)加强三角函数应用意识

  三角函数产生于生产实践,也被广泛应用与实践,因此,应该培养我们对三角函数的应用能力。

高中数学学习方法14

  1、首先是精选题目,做到少而精。

  只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

  2、其次是分析题目。

  解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。

  3、最后,题目总结。

  解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的'题目,有以下几个方面需要总结:

  ①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。

  ②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。

  ③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。

  ④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。

  高中数学导数的定义,公式及应用总结

  导数的定义:

  当自变量的增量Δx=x-x0,Δx→0时函数增量Δy=f(x)- f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率)、

  函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在P0[x0,f(x0)]点的切线斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

  一般地,我们得出用函数的导数来判断函数的增减性(单调性)的法则:设y=f(x )在(a,b)内可导。如果在(a,b)内,f'(x)>0,则f(x)在这个区间是单调增加的(该点切线斜率增大,函数曲线变得“陡峭”,呈上升状)。如果在(a,b)内,f'(x)<0,则f(x)在这个区间是单调减小的。所以,当f'(x)=0时,y=f(x )有极大值或极小值,极大值中最大者是最大值,极小值中最小者是最小值

  求导数的步骤:

  求函数y=f(x)在x0处导数的步骤:

  ①求函数的增量Δy=f(x0+Δx)-f(x0)

  ②求平均变化率

  ③取极限,得导数。

  导数公式:

  ① C'=0(C为常数函数);

  ② (x^n)'= nx^(n-1) (n∈Q___);熟记1/X的导数;

  ③ (sinx)' = cosx;(cosx)' = - sinx;(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(x(x^2-1)^1/2) (arccscx)'=-1/(x(x^2-1)^1/2) ④ (sinhx)'=hcoshx (coshx)'=-hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (x<1) xlna="" 、="">0,那么函数y=f(x)在这个区间内单调递增;如果f'(x)<0,那么函数y=f(x)在这个区间内单调递减,="">0是f(x)在此区间上为增函数的充分条件,而不是必要条件,如f(x)=x3在R内是增函数,但x=0时f'(x)=0。也就是说,如果已知f(x)为增函数,解题时就必须写f'(x)≥0。

  (2)求函数单调区间的步骤(不要按图索骥缘木求鱼这样创新何言?1、定义最基础求法2、复合函数单调性)

  ①确定f(x)的定义域;

  ②求导数;

  ③由(或)解出相应的x的范围、当f'(x)>0时,f(x)在相应区间上是增函数;当f'(x)<0时,f(x)在相应区间上是减函数。--0,那么函数y=f(x)在这个区间内单调递减.-->--1)-->

  2、函数的极值

  (1)函数的极值的判定

  ①如果在两侧符号相同,则不是f(x)的极值点;

  ②如果在附近的左右侧符号不同,那么,是极大值或极小值、

  3、求函数极值的步骤

  ①确定函数的定义域;

  ②求导数;

  ③在定义域内求出所有的驻点与导数不存在的点,即求方程及的所有实根;④检查在驻点左右的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值、

  4、函数的最值

  (1)如果f(x)在[a,b]上的最大值(或最小值)是在(a,b)内一点处取得的,显然这个最大值(或最小值)同时是个极大值(或极小值),它是f(x)在(a,b)内所有的极大值(或极小值)中最大的(或最小的),但是最值也可能在[a,b]的端点a或b处取得,极值与最值是两个不同的概念;

  (2)求f(x)在[a,b]上的最大值与最小值的步骤①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。

高中数学学习方法15

  高中数学学习是中学阶段承前启后的关键时期,不少学生升入高中后,能否适应高中数学的学习,是摆在高中新生面前的一个亟待解决的问题,除了学习环境、教学内容和教学因素等外部因素外,同学们应该转变观念、提高认识和改进学法,本文就此问题谈点看法。

  1、认识高中数学的特点。

  高中数学是初中数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维,而高中数学语言表达抽象,逻辑严密,思维严谨,知识连贯性和系统性强。

  2、正确对待学习中遇到的新困难和新问题。

  在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。

  3、要提高自我调控的“适教”能力。

  一般来说,教师经过一段时间的教学实践后,因自身对教学过程的不同理解和知识结构、思维特点、个性倾向、能力品质、教学观念、职业经历等原因,在教学方式、方法、策略的采用上表现出一定的倾向性,形成自己独特的、鲜明的、一贯的教学风格或特点。作为一名学生,让老师去适应自己显然不现实,我们应该根据教的特点,从适应教的目的出发,立足于自身的实际,优化学习策略,调控自己的学习行为,使自己的学法逐步适应老师的教法,从而使自己学得好、学得快。

  4、要将“以老师为中心”转变为“以自己为主体,老师为主导”的学习模式。

  数学不是靠老师教会的,而是在老师引导下,靠自己主动思维活动去获取的,学习数学就是要积极主动地参与教学过程,并经常发现和提出问题,而不能依着老师的惯性运转,被动地接受所学知识和方法。

  5、要养成良好的个性品质。

  要树立正确的学习目标,培养浓厚的学习兴趣和顽强的学习毅力,要有足够的学习信心,实事求是的科学态度,以及独立思考、勇于探索的创新精神。

  6、要养成良好的预习习惯,提高自学能力。

  课前预习而“生疑”,“带疑”听课而“感疑”,通过老师的点拨、讲解而“悟疑”、“解疑”,从而提高课堂听课效果。预习也叫课前自学,预习的越充分,听课效果就越好;听课效果越好,就能更好地预习下节内容,从而形成良性循环。

  7、要养成良好的审题习惯,提高阅读能力。

  审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到目要“宁停三分”,“不抢一秒”,要在已有知识和解题经验基础上,译字逐句仔细审题,细心推敲,切忌题意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,将隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破点,从而形成解题思路。

  8、要养成良好的演算、验算习惯,提高运算能力。

  学习数学离不开运算,初中老师往往一步一步在黑板上演算,因时间有限,运算量大,高中老师常把计算留给学生,这就要同学们多动脑,勤动手,不仅能笔算,而且也能口算和心算,对复杂运算,要有耐心,掌握算理,注重简便方法。

  9、要养成良好的解题习惯,提高自己的思维能力。

  数学是思维的体操,是一门逻辑性强、思维严谨的学科。而训练并规范解题习惯是提高用文字、符号和图形三种数学语言表达的有效途径,而数学语言又是发展思维能力的基础。因此,只有以本为本,夯实基础,才能逐步提高自己的思维能力。

  10、要养成解后反思的习惯,提高分析问题的能力。

  解完题目之后,要养成不失时机地回顾下述问题:解题过程中是如何分析联想探索出解题途径的?使问题获得解决的关键是什么?在解决问题的过程中遇到了哪些困难?又是怎样克服的?这样,通过解题后的回顾与反思,就有利于发现解题的关键所在,并从中提炼出数学思想和方法,如果忽视了对它的挖掘,解题能力就得不到提高。因此,在解题后,要经常总结题目及解法的规律,只有勤反思,才能“站得高山,看得远,驾驭全局”,才能提高自己分析问题的能力。

  11、要养成纠错订正的习惯,提高自我评判能力。

  要养成积极进取,不屈不挠,耐挫折,不自卑的心理品质,对做错的题要反复琢磨,寻找错因,进行更正,养成良好的习惯,不少问题就会茅塞顿开,割然开朗,迎刃而解,从而提高自我评判能力。

  12、要养成善于交流的习惯,提高表达能力。

  在数学学习过程中,对一些典型问题,同学们应善于合作,各抒己见,互相讨论,取人之长,补己之短,也可主动与老师交流,说出自己的见解和看法,在老师的点拨中,他的思想方法会对你产生潜移默化的影响。因此,只有不断交流,才能相互促进、共同发展,提高表达能力。如果固步自封,就会造成钻牛角尖,浪费不必要的时间。

  13、要养成勤学善思的.习惯,提高创新能力。

  “学而不思则罔,思而不学则贻”。在学习数学的过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,进行独立思考,注重新旧知识的内在联系,把握概念的内涵和外延,做到一题多解,一题多变,不满足于现成的思路和结论,善于从多侧面、多方位思考问题,挖掘问题的实质,勇于发表自己的独特见解。因为只有思索才能生疑解疑,只有思索才能透彻明悟。一个人如果长期处于无问题状态,就说明他思考不够,学业也就提高不了。

  14、要养成归纳总结的习惯,提高概括能力。

  每学完一节一章后,要按知识的逻辑关系进行归纳总结,使所学知识系统化、条理化、专题化,这也是再认识的过程,对进一步深化知识积累资料,灵活应用知识,提高概括能力将起到很好的促进作用。

  15、要养成做笔记的习惯,提高理解力。

  为了加深对内容的理解和掌握,老师补充内容和方法很多,如果不做笔记,一旦遗忘,无从复习巩固,何况在做笔记和整理过程中,自己参与教学活动,加强了学习主动性和学习兴趣,从而提高了自己的理解力。

  16、要养成写数学学习心得的习惯,提高探究能力。

  写数学学习心得,就是记载参与数学活动的思考、认识和经验教训,领悟数学的思维结果。把所见、所思、所悟表达出来,能促使自己数学经验、数学意识的形成,以及对数学概念、知识结构、方法原理进行系统分类、概括、推广和延伸,从而使自己对数学的理解从低水平上升到高水平,提高自己的探究能力。

  总之,同学们要养成良好的学习习惯,勤奋的学习态度,科学的学习方法,充分发挥自身的主体作用,不仅学会,而且会学,只有这样,才能取得事半功倍之效。

【高中数学学习方】相关文章:

高中数学的学习方法05-17

高中数学学习总结04-09

高中数学的学习方法12-02

高中数学学习方法10-12

高中数学的学习方法(优)05-29

高中数学新课程学习心得02-26

有效的高中数学学习方法01-05

浅谈高中数学习题讲练论文09-28

高中数学学习计划(通用11篇)05-31

高中数学详细学习方法介绍整理06-11