数的整除知识点总结集锦
上学的时候,是不是经常追着老师要知识点?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。还在为没有系统的知识点而发愁吗?下面是小编为大家整理的数的整除知识点总结,欢迎大家分享。
数的整除知识点总结1
1、把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。
2、求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。
3、求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。
4、成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质; 两个合数的公约数只有1时,这两个合数互质。
总结:小升初数学:数的整除知识点就为大家介绍到这儿了,希望小编的整理可以帮助到大家,祝大家学习进步。
数的整除知识点总结2
数的整除
整除的意义
整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)
除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。
因数和倍数
1、如果整数a乘整数b整除等于整数C,a和 b就是C的因数,C就是a和b的倍数。(a.b.c都为非0整数)
2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
3、一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数。
奇数和偶数
1、能被2整除的数叫偶数。例如:0、2、4、6、8、10……注:0也是偶数2、不能被2整除的数叫奇数。例如:1、3、5、7、9……
整除的特征
1、能被2整除的数的特征:个位上是0、2、4、6、8。
2、能被5整除的数的特征:个位上是0或5。
3、能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3 整除。
质数和合数
1、一个数只有1和它本身两个约数,这个数叫做质数(素数)。
2、一个数除了1和它本身外,还有别的约数,这个数叫做合数。
3、1和0既不是质数,也不是合数。
4、自然数按约数的个数可分为:质数、合数 .0和1
5、自然数按能否被2整除分为:奇数、偶数
分解质因数
1、每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。例如:18=3×3×2,3和2叫做18的质因数。
2、把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数。通常用短除法来分解质因数。
3、几个数公有的因数叫做这几个数的公因数。其中最大的一个叫这几个数的最大公因数。公因数只有1的两个数,叫做互质数。几个数公有的倍数叫做这几个数的公倍数。其中最大的一个叫这几个数的最大公倍数。
4、特殊情况下几个数的最大公因数和最小公倍数。(1)如果几个数中,较大数是较小数的倍数,较小数是较大数的因数,则较大数是它们的最小公倍数,较小数是它们的'最大公因数。(2)如果几个数两两互质,则它们的最大公因数是1,小公倍数是这几个数连乘的积。
奇数和偶数的运算性质:
1、相邻两个自然数之和是奇数,之积是偶数。
2、奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,
奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。
数的整除知识点总结3
数的整除
1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。
2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。
3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。
4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。
质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。质数都有2个约数。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。合数至少有3个约数。
最小的质数是2,最小的合数是4
1~20以内的质数有:2、3、5、7、11、13、17、19
1~20以内的合数有“4、6、8、9、10、12、14、15、16、18
6.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。
能被5整除的数的特征:个位上是0或者5的数,都能被5整除。
能被3整除的数的特征:一个数的各位上 数的和能被3整除,这个数就能被3整除。
7.质因数:如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。
8.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
9.公约数、公倍数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
10.一般关系的两个数的最大公约数、最小公倍数用短除法来求;互质关系的两个数最大公约数是1,最小公倍数是两数之积;倍数关系的两个数的最大公约数是小数,最小公倍数是大数。
11.互质数:公约数只有1的两个数叫做互质数。
12.两数之积等于最小公倍数和最大公约数的积。
数的整除知识点总结4
1. 定义:如果一个整式除以另一个整式所得的商式也是一个整式,并且余式是零,则称这个整式被另一个整式整除。
2. 根据被除式=除式×商式+余式,设f(x),p(x),q(x)都是含x 的整式,
那么 式的整除的意义可以表示为:
若f(x)=p(x)×q(x), 则称f(x)能被 p(x)和q(x)整除
例如∵x2-3x-4=(x-4)(x +1),
∴x2-3x-4能被(x-4)和(x +1)整除。
显然当 x=4或x=-1时x2-3x-4=0,
3. 一般地,若整式f(x)含有x –a的因式,则f(a)=0
反过来也成立,若f(a)=0,则x-a能整除f(x)。
4. 在二次三项式中
若x2+px+q=(x+a)(x+b)=x2+(a+b)x+ab 则p=a+b,q=ab
在恒等式中,左右两边同类项的系数相等。这可以推广到任意多项式。
数的整除知识点总结5
数的整除要记住,除式各项都要是整数。
但是除数不等于0,商是整数无余。
a÷b时可以说,数b能够整除a,数a能被b整除。
a是数b的倍数,b是数a的约数。
如果要是求约数就去除以自然数,
如果要是求倍数就去乘自然数。
温馨提示:在数学学习方面掌握好数学知识点很重要,由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,学好数学就并不困难,希望这篇小学五年级数学知识点:数的整除知识点可以对大家有所帮助。
数的整除知识点总结6
一、基本概念和符号:
1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
2、常用符号:整除符号|,不能整除符号 因为符号∵,所以的符号
二、整除判断方法:
1. 能被2、5整除:末位上的数字能被2、5整除。
2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。
3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。
4. 能被3、9整除:各个数位上数字的和能被3、9整除。
5. 能被7整除:
①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。
②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。
6. 能被11整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。
②奇数位上的数字和与偶数位数的数字和的差能被11整除。
③逐次去掉最后一位数字并减去末位数字后能被11整除。
7. 能被13整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。
三、整除的性质:
1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。
2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。
4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
六年级考试是小学生进入初等重点初中院校的一次重要考试,希望大家都能够认真复习,同时也希望我们准备的六年级数学数的整除知识点能让大家在六年级的备考过程助大家一臂之力!
【数的整除知识点总结】相关文章:
数的整除教案01-27
数的整除教学总结反思11-17
数的整除参考教案12-04
数的整除的教学反思12-22
数的整除教学反思02-10
数的整除复习教案11-01
数的整除问题奥数试题及答案03-19
数的整除教学反思范文12-08
数的整除复习优秀教案12-21