函数奇偶性知识点总结

时间:2021-04-11 19:16:05 总结 我要投稿

函数奇偶性知识点总结

  导语:虽然瑕庇与错误也是生活的组成部分,我们不能为了追求完美而忽视了我们眼前是生活。以下小编为大家介绍函数奇偶性知识点总结文章,欢迎大家阅读参考!

函数奇偶性知识点总结

  函数奇偶性知识点总结

  指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。

  可以看到:

  (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

  (2)指数函数的值域为大于0的实数集合。

  (3)函数图形都是下凹的。

  (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

  (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的.位置。其中水平直线y=1是从递减到递增的一个过渡位置。

  (6)函数总是在某一个方向上无限趋向于X轴,永不相交。

  (7)函数总是通过(0,1)这点。

  (8)显然指数函数无界。

  奇偶性

  注图:(1)为奇函数(2)为偶函数

  1、定义

  一般地,对于函数f(x)

  (1)如果对于函数定义域内的任意一个x,都有f(—x)=—f(x),那么函数f(x)就叫做奇函数。

  (2)如果对于函数定义域内的任意一个x,都有f(—x)=f(x),那么函数f(x)就叫做偶函数。

  (3)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

  (4)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

  说明:①奇、偶性是函数的整体性质,对整个定义域而言

  ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

  (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

  ③判断或证明函数是否具有奇偶性的根据是定义

  2、奇偶函数图像的特征:

  定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。

  f(x)为奇函数《==》f(x)的图像关于原点对称

  点(x,y)(—x,—y)

  奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

  偶函数在某一区间上单调递增,则在它的对称区间上单调递减。

  3、奇偶函数运算

  (1)、两个偶函数相加所得的和为偶函数。

  (2)、两个奇函数相加所得的和为奇函数。

  (3)、一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。

  (4)、两个偶函数相乘所得的积为偶函数。

  (5)、两个奇函数相乘所得的积为偶函数。

  (6)、一个偶函数与一个奇函数相乘所得的积为奇函数。

《函数奇偶性知识点总结.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【函数奇偶性知识点总结】相关文章:

奇函数的反函数是奇函数吗10-12

函数与反函数关于什么对称10-12

常数函数是周期函数吗?10-12

奇函数乘奇函数等于什么10-12

“数的奇偶性”教学设计(6篇)04-05

幂函数教案04-07

复合函数怎么分解10-12

一次函数和正比例函数的概念   10-12

《观潮》知识点总结11-17

《对数函数》教学反思04-19

函数奇偶性知识点总结

  导语:虽然瑕庇与错误也是生活的组成部分,我们不能为了追求完美而忽视了我们眼前是生活。以下小编为大家介绍函数奇偶性知识点总结文章,欢迎大家阅读参考!

函数奇偶性知识点总结

  函数奇偶性知识点总结

  指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。

  可以看到:

  (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

  (2)指数函数的值域为大于0的实数集合。

  (3)函数图形都是下凹的。

  (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

  (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的.位置。其中水平直线y=1是从递减到递增的一个过渡位置。

  (6)函数总是在某一个方向上无限趋向于X轴,永不相交。

  (7)函数总是通过(0,1)这点。

  (8)显然指数函数无界。

  奇偶性

  注图:(1)为奇函数(2)为偶函数

  1、定义

  一般地,对于函数f(x)

  (1)如果对于函数定义域内的任意一个x,都有f(—x)=—f(x),那么函数f(x)就叫做奇函数。

  (2)如果对于函数定义域内的任意一个x,都有f(—x)=f(x),那么函数f(x)就叫做偶函数。

  (3)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

  (4)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

  说明:①奇、偶性是函数的整体性质,对整个定义域而言

  ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

  (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

  ③判断或证明函数是否具有奇偶性的根据是定义

  2、奇偶函数图像的特征:

  定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。

  f(x)为奇函数《==》f(x)的图像关于原点对称

  点(x,y)(—x,—y)

  奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。

  偶函数在某一区间上单调递增,则在它的对称区间上单调递减。

  3、奇偶函数运算

  (1)、两个偶函数相加所得的和为偶函数。

  (2)、两个奇函数相加所得的和为奇函数。

  (3)、一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数。

  (4)、两个偶函数相乘所得的积为偶函数。

  (5)、两个奇函数相乘所得的积为偶函数。

  (6)、一个偶函数与一个奇函数相乘所得的积为奇函数。