七年级上册数学整式知识点

时间:2022-08-02 11:20:40 总结 我要投稿

七年级上册数学整式知识点

  在平平淡淡的学习中,相信大家一定都接触过知识点吧!知识点就是学习的重点。为了帮助大家掌握重要知识点,下面是小编帮大家整理的七年级上册数学整式知识点,仅供参考,希望能够帮助到大家。

七年级上册数学整式知识点

  七年级上册数学整式知识点1

  代数式中的一种有理式:不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。(分母中含有字母有除法运算的,那么式子叫做分式)

  1、单项式:数或字母的积(如5n),单个的数或字母也是单项式。

  (1)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。(如果一个单项式,只含有数字因数,系数是它本身,次数是0)。

  (2)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数(非零常数的次数为0)。

  2、多项式

  (1)概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。

  (2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。

  (3)多项式的排列:

  把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

  在做多项式的排列的题时注意:

  (1)由于单项式的项包括它前面的性质符号,因此在排列时,仍需把每一项的性质符

  看作是这一项的一部分,一起移动。

  (2)有两个或两个以上字母的多项式,排列时,要注意:

  a、先确认按照哪个字母的指数来排列。

  b、确定按这个字母降幂排列,还是升幂排列。

  3、整式:单项式和多项式统称为整式。

  4、列代数式的几个注意事项

  (1)数与字母相乘,或字母与字母相乘通常使用“· ”乘,或省略不写;

  (2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;

  (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

  (4)带分数与字母相乘时,要把带分数改成假分数形式;

  (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成3/a的形式;

  (6)a与b的差写作a—b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a—b和b—a 。

  初中数学实数知识点

  平方根:

  ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

  ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

  ③一个正数有2个平方根/0的平方根为0/负数没有平方根。

  ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:

  ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:

  ①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

  ③每一个实数都可以在数轴上的一个点来表示。

  初中提高数学成绩诀窍

  数学不能只依靠上课听得懂

  很多初中生认为自己只要上数学课听得懂就够了,但是一做到综合题就蒙了,基础题会做,但是会马虎。这类问题都是学生在课堂上都以为自己听得懂就够了。

  初中同学要首先对数学做一个认知,听得懂≠会做,会做≠拿的到分。听得懂只占你数学成绩的20%,仅仅听得懂只说明你理解能力还可以,不说明你能拿到很高的数学成绩。

  只有听的懂理解了加上练,再加上多练,达到最后又快又准的做出来,这时候的数学成绩才会有长足的进步。

  三个重要的数学思想

  1、方程的思想。数学是研究事物的空间形式和数量关系的,初中数学最重要的就是等量关系,其次是不等量关系。最常见的等量关系就是方程。

  2、数形结合的思想。任何一道题,只要与形沾边,就应该根据题意中的草图分析一番。这样做,不但直观,而且全面,整体性强。

  3、对应的思想。

  初中生数学成绩的提高,需要靠自己勤加练习和脚踏实地的去接受数学。

  七年级上册数学整式知识点2

  1.充分体现由特殊到一般,由一般到特殊的思维过程,经历探索数量关系和变化规律的过程,渗透辩证唯物主义思想。

  2.知识呈现过程尽量做到与学生已有生活经验密切联系,如皮球的弹跳高度,传数游戏等,发展学生应用数学的意识和能力。

  3.让知识的发生、发展过程得以充分暴露,重视基本知识和基本技能的学习。

  4.注意发挥例题和习题的教育功能。加强学科间的纵向联系并注意与其他学科的横向联系,扩充学生的知识面,注意适当插入一些开放题,培养发散思维,适时渗透美育和德育教育。

  知识要点:

  整式的有关概念

  (1)单项式:表示数与字母的乘积的代数式,叫做单项式,单独的一个数或一个字母也是单项式,如、2πr、a,0……都是单项式。

  (2)多项式:几个单项式的和叫做多项式。

  七年级上册数学整式知识点3

  整式与分式

  整式:

  ①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

  ②一个单项式中,所有字母的指数和叫做这个单项式的次数。

  ③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

  整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

  幂的运算:AM+AN=A(M+N)

  (AM)N=AMN

  (A/B)N=AN/BN 除法一样。

  整式的乘法:

  ①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

  ②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

  ③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

  公式两条:平方差公式/完全平方公式

  整式的除法:

  ①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

  ②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

  分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

  方法:提公因式法、运用公式法、分组分解法、十字相乘法。

  分式:

  ①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

  ②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

  分式的运算:

  乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

  除法:除以一个分式等于乘以这个分式的倒数。

  加减法:

  ①同分母的分式相加减,分母不变,把分子相加减。

  ②异分母的分式先通分,化为同分母的分式,再加减。

  分式方程:

  ①分母中含有未知数的方程叫分式方程。

  ②使方程的分母为0的解称为原方程的增根。

  七年级上册数学整式知识点4

  1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

  2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;

  单项式中所有字母指数的和,叫单项式的次数

  3.多项式:几个单项式的和叫多项式

  4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;

  5.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项

  6.合并同类项法则:系数相加,字母与字母的指数不变

  7.去(添)括号法则:

  去(添)括号时,若括号前边是+号,括号里的各项都不变号;若括号前边是-号,括号里的各项都要变号

  8.整式的加减:一找:(划线);二+(务必用+号开始合并)三合:(合并)

  9.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)

  七年级上册数学整式知识点5

  1.字母表示数

  1)字母表示运算律

  2)字母表示计算公式

  字母可以表示任何数

  2.代数式

  1)概念:像4+3(x-1),x+x+(x+1),a+b,ab,2(+n),s/t 等式子都是代数式,单独一个数或一个字母也是代数式,如-5,a,b等.

  2)书写要求:

  ①字母与字母相乘时,乘号通常简写作“ ”或省略不写;数字与字母相乘时,数字在前;带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;数字与数字相乘仍用“×”

  ②除法一般写成分数形式

  ③ 如果代数式是积或商的形式,单位直接写在后面;如果是和或差的形式,必须先把代数式用括号括起来再写单位。

  3.整式

  1)单项式:表示数字和字母的积,单独的一个数或一个字母也是单项式

  ① 系数:单项式中的数字因数(包括其前面的符号)

  ② 次数:单项式中,所有字母的指数的和;单独的数字是0次单项式

  注意:

  (1)单项式中数与字母之间都是乘积关系,凡字母出现在分母中的式子一定不是单项式,如1/x不是单项式;

  (2)单项式中不含加减运算;

  (3)π是常数,在单项式中相当于数字因数;

  (4)定义中的“数”可以是小数,也可以是分数、整数

  2)多项式:几个单项式的和;在多项式中,每个单项式叫做多项式的项,不含字母的项叫常数项;一个多项式含有几项,就叫几项式;

  次数: 多项式里,次数最高项的次数,是多项式的次数;

  注意:

  (1)确定多项式的项时,不要忽略它的符号;

  (2)关于某个字母的n次项式,要求是合并同类项后的最简多项式

  3) 整式:单项式和多项式统称为整式

  4)同类项:

  ① 概念:所含字母相同,并且相同字母的指数也相同的项;与它们的系数大小无关,与字母顺序无关;几个常数也是同类项.

  ②合并同类项法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变

  4.整式的加减:

  1)整式加减是求几个整式的和或差的运算,其实质是去括号,合并同类项

  2)法则:几个整式相加减,用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项

  3)化简求值:一是相加减化简,二是用具体数值代替整式中的字母,三是按式子的运算关系计算,计算其结果

  5.探索与表达规律:图形中的规律、数字中的规律、算式中的规律

  七年级上册数学整式知识点6

  一、去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉。括号里各项都不变符号,括号前是“-”号,把括号和它前面的“-”号去掉。括号里各项都改变符号。

  二、合并同类项:同类项的系数相加,所得的结果作为系数。字母和字母的指数不变。同类项合并的依据:乘法分配律。

  三、整式运算的法则:

  1.整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接

  2.整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式。相同字母相乘(除)要用到同底数幂的运算性质:多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加

  3.整式的乘方

  单项式乘方,把系数乘方,作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因式单项式的乘方要用到幂的乘方性质与积的乘方性质:

  七年级上册数学整式知识点7

  一、整式

  单项式和多项式统称整式。

  a)由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。

  b)单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。

  c)一个单项式中,所有字母的指数和叫做这个单项式的次数(注意:常数项的单项式次数为0)

  a)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数.

  b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.

  a)整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

  b)括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。

  二、同底数幂的'乘法

  (,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

  a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

  b) 指数是1时,不要误以为没有指数;

  c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

  d)当三个或三个以上同底数幂相乘时,法则可推广为(其中、n、p均为整数);

  e)公式还可以逆用:(、n均为整数)

  a)幂的乘方法则:(,n都是整数数)是幂的乘法法则为基础推导出来的,但两者不能混淆。

  b)(,n都为整数)

  c) 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3

  d)底数有时形式不同,但可以化成相同。

  e) 要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。

  f) 积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(ab)n=anbn (n为正整数)。

  g) 幂的乘方与积乘方法则均可逆向运用。

  三、同底数幂的除法

  a)同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0).

  b)在应用时需要注意以下几点:

  1) 法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a0。

  2)任何不等于0的数的0次幂等于1,即a0=1(a≠0) ,如100=1 ,(-2.50=1),则00无意义。

  c)任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即( a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的,当a<0时,a-p的值可能是正也可能是负的,如, d)运算要注意运算顺序。

  四、整式的乘法

  单项式相乘,它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

  单项式乘法法则在运用时要注意以下几点:

  a)积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;

  b)相同字母相乘,运用同底数幂的乘法法则;

  c)只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

  d)单项式乘法法则对于三个以上的单项式相乘同样适用;

  e)单项式乘以单项式,结果仍是一个单项式。

  单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

  单项式与多项式相乘时要注意以下几点:

  a)单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

  b)运算时要注意积的符号,多项式的每一项都包括它前面的符号;

  c) 在混合运算时,要注意运算顺序。

  多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项相乘,再把所得的积相加。

  多项式与多项式相乘时要注意以下几点:

  a)多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

  b)多项式相乘的结果应注意合并同类项;

  c)对含有同一个字母的一次项系数是1的两个一次二项式相乘(x+a)(x+b)=x2+(a+b)x+ab,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(x+a)和(nx+b)相乘可以得到。

  五.平方差公式

  两数和与这两数差的积,等于它们的平方差,即。

  其结构特征是:

  a)公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;

  b) 公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

  六、完全平方公式

  两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即;

  口诀:首平方,尾平方,2倍乘积在中央;

  a)公式左边是二项式的完全平方;

  b)公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

  c)在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误。

  七、整式的除法

  单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

  多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

  七年级上册数学整式知识点8

  1.单项式的乘法法则:

  单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.

  单项式与多项式的乘法法则:

  单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.

  多项式与多项式的乘法法则:

  多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.

  单项式的除法法则:

  单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.

  多项式除以单项式的法则:

  多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

  2、乘法公式:

  ①平方差公式:(a+b)(a-b)=a2-b2

  文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.

  ②完全平方公式:(a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.

  3、因式分解:

  因式分解的定义.

  把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.

  七年级上册数学整式知识点9

  1、单项式对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式.单独一个数或一个字母也是单项式.

  2、系数单项式中的数字因数叫做这个单项式的系数.

  3、降幂排列把一个多项式,按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列.

  4、升幂排列把一个多项式,按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.

  5、整式单项式和多项式统称整式。

  6、同类项所含字母相同,并且相同字母的次数也相同的项,叫做同类项.常数项都是同类项.

  7、合并同类项把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.

  8、去括号法则括号前是"+"号,把括号和它前面的"+"号去掉,括号里各项都不变符号;括号前是"-"号,把括号和它前面的"-"号去掉,括号里各项都改变符号.例:a+(b-2c)-(e-2d)=a+b-2c-e+2d14、添括号法则添括号后,括号前面是"+"号,括到括号里的各项都不变符号;添括号后,括号前面是"-"号,括到括号里的各项都改变符号.例:m+2x-y+z-5=m+(2x-y)-(-z+5)

  9、整式的加减整式加减的一般步骤:

  1.如果遇到括号,按去括号法则先去括号;

  2.合并同类项.

  10、代数式的恒等变形一个代数式用另一个与它恒等的表达式去代换,叫做恒等变形.

【七年级上册数学整式知识点】相关文章:

初中数学《整式》知识点总结04-11

初三数学知识点整式总结04-11

数学《整式》说课稿03-07

数学整式教案11-27

七年级上册数学整式教学计划模板07-19

七年级上册数学整式的加减教学计划05-30

七年级数学上册整式多项式说课稿01-06

人教版七年级数学上册《整式的加减》教学反思03-09

人教版七年级数学上册《整式的加减》教学反思11-25