高一数学知识点总结

时间:2021-12-08 11:08:41 总结 我要投稿

高一数学知识点总结通用15篇

  总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它能够给人努力工作的动力,不如静下心来好好写写总结吧。总结怎么写才不会流于形式呢?下面是小编帮大家整理的高一数学知识点总结,欢迎阅读,希望大家能够喜欢。

高一数学知识点总结通用15篇

高一数学知识点总结1

  一、函数的概念与表示

  1、映射

  (1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。

  注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射

  2、函数

  构成函数概念的三要素

  ①定义域②对应法则③值域

  两个函数是同一个函数的条件:三要素有两个相同

  二、函数的解析式与定义域

  1、求函数定义域的主要依据:

  (1)分式的分母不为零;

  (2)偶次方根的被开方数不小于零,零取零次方没有意义;

  (3)对数函数的真数必须大于零;

  (4)指数函数和对数函数的底数必须大于零且不等于1;

  三、函数的值域

  1求函数值域的方法

  ①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;

  ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;

  ③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;

  ④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);

  ⑤单调性法:利用函数的单调性求值域;

  ⑥图象法:二次函数必画草图求其值域;

  ⑦利用对号函数

  ⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数

  四.函数的奇偶性

  1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。

  如果对于任意∈A,都有,则称y=f(x)为奇

  函数。

  2.性质:

  ①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,

  ②若函数f(x)的定义域关于原点对称,则f(0)=0

  ③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]

  3.奇偶性的判断

  ①看定义域是否关于原点对称②看f(x)与f(-x)的关系

  五、函数的单调性

  1、函数单调性的定义:

  2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。

高一数学知识点总结2

  集合的运算

  运算类型交 集并 集补 集

  定义域 R定义域 R

  值域>0值域>0

  在R上单调递增在R上单调递减

  非奇非偶函数非奇非偶函数

  函数图象都过定点(0,1)函数图象都过定点(0,1)

  注意:利用函数的单调性,结合图象还可以看出:

  (1)在[a,b]上, 值域是 或 ;

  (2)若 ,则 ; 取遍所有正数当且仅当 ;

  (3)对于指数函数 ,总有 ;

  二、对数函数

  (一)对数

  1.对数的概念:

  一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)

  说明:○1 注意底数的限制 ,且 ;

  ○2 ;

  ○3 注意对数的书写格式.

  两个重要对数:

  ○1 常用对数:以10为底的对数 ;

  ○2 自然对数:以无理数 为底的对数的对数 .

  指数式与对数式的互化

  幂值 真数

  = N = b

  底数

  指数 对数

  (二)对数的运算性质

  如果 ,且 , , ,那么:

  ○1 + ;

  ○2 - ;

  ○3 .

  注意:换底公式: ( ,且 ; ,且 ; ).

  利用换底公式推导下面的结论:(1) ;(2) .

  (3)、重要的公式 ①、负数与零没有对数; ②、 , ③、对数恒等式

  (二)对数函数

  1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).

  注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数.

  ○2 对数函数对底数的限制: ,且 .

  2、对数函数的性质:

  a>10

  定义域x>0定义域x>0

  值域为R值域为R

  在R上递增在R上递减

  函数图象都过定点(1,0)函数图象都过定点(1,0)

  (三)幂函数

  1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.

  2、幂函数性质归纳.

  (1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);

  (2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;

  (3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.

  第四章 函数的应用

  一、方程的根与函数的零点

  1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。

  2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。

  即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点.

  3、函数零点的求法:

  ○1 (代数法)求方程 的实数根;

  ○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.

  4、二次函数的零点:

  二次函数 .

  (1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.

  (2)△=0,方程 有两相等实根,二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.

  (3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.

  5.函数的模型

高一数学知识点总结3

  数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。小编准备了高一数学必修1期末考知识点,希望你喜欢。

  一、集合有关概念

  1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.

  2、集合的中元素的三个特性:

  1.元素的确定性; 2.元素的互异性; 3.元素的无序性

  说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.

  (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.

  (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.

  (4)集合元素的三个特性使集合本身具有了确定性和整体性.

  3、集合的表示:{ } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  2.集合的表示方法:列举法与描述法.

  注意啊:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集 N*或N+ 整数集Z 有理数集Q 实数集R

  关于属于的概念

  集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 aA ,相反,a不属于集合A 记作 a?A

  列举法:把集合中的元素一一列举出来,然后用一个大括号括上.

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.

  ①语言描述法:例:{不是直角三角形的三角形}

  ②数学式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}

  4、集合的分类:

  1.有限集 含有有限个元素的集合

  2.无限集 含有无限个元素的集合

  3.空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合间的基本关系

  1.包含关系子集

  注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合.

  反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

  2.相等关系(55,且55,则5=5)

  实例:设 A={x|x2-1=0} B={-1,1} 元素相同

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  ① 任何一个集合是它本身的子集.AA

  ②真子集:如果AB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)

  ③如果 AB, BC ,那么 AC

  ④ 如果AB 同时 BA 那么A=B

  3. 不含任何元素的集合叫做空集,记为

  规定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

  三、集合的运算

  1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.

  记作AB(读作A交B),即AB={x|xA,且xB}.

  2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作A并B),即AB={x|xA,或xB}.

  3、交集与并集的性质:AA = A, A=, AB = BA,AA = A,

  A= A ,AB = BA.

  4、全集与补集

  (1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

  (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用U来表示.

  (3)性质:⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U

高一数学知识点总结4

  立体几何初步

  1、柱、锥、台、球的结构特征

  (1)棱柱:

  定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

  表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

  (2)棱锥

  定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

  表示:用各顶点字母,如五棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

  (3)棱台:

  定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

  分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

  表示:用各顶点字母,如五棱台

  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

  (4)圆柱:

  定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

  (5)圆锥:

  定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

  (6)圆台:

  定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  (7)球体:

  定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

  2、空间几何体的三视图

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

  注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

  俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

  侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

  3、空间几何体的直观图——斜二测画法

  斜二测画法特点:

  ①原来与x轴平行的线段仍然与x平行且长度不变;

  ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

  直线与方程

  (1)直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

  (2)直线的斜率

  ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。

  ②过两点的直线的斜率公式:

  注意下面四点:

  (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

  (2)k与P1、P2的顺序无关;

  (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

  幂函数

  定义:

  形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

  定义域和值域:

  当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

  性质:

  对于a的'取值为非零有理数,有必要分成几种情况来讨论各自的特性:

  首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

  排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

  排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;

  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

  指数函数

  (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

  (2)指数函数的值域为大于0的实数集合。

  (3)函数图形都是下凹的。

  (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

  (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

  (6)函数总是在某一个方向上无限趋向于X轴,永不相交。

  (7)函数总是通过(0,1)这点。

  (8)显然指数函数无界。

  奇偶性

  定义

  一般地,对于函数f(x)

  (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

  (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

  (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

  (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

高一数学知识点总结5

  函数的概念

  函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A---B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.

  (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;

  (2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

  函数的三要素:定义域、值域、对应法则

  函数的表示方法:(1)解析法:明确函数的定义域

  (2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。

  (3)列表法:选取的自变量要有代表性,可以反应定义域的特征。

  4、函数图象知识归纳

  (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

  (2)画法

  A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。

  (3)函数图像平移变换的特点:

  1)加左减右——————只对x

  2)上减下加——————只对y

  3)函数y=f(x)关于X轴对称得函数y=-f(x)

  4)函数y=f(x)关于Y轴对称得函数y=f(-x)

  5)函数y=f(x)关于原点对称得函数y=-f(-x)

  6)函数y=f(x)将x轴下面图像翻到x轴上面去,x轴上面图像不动得

  函数y=|f(x)|

  7)函数y=f(x)先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)

高一数学知识点总结6

  集合间的基本关系

  1.“包含”关系—子集

  注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

  2.“相等”关系(5≥5,且5≤5,则5=5)

  实例:设 A={x|x2-1=0} B={-1,1} “元素相同”

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  A?① 任何一个集合是它本身的子集。A

  B那就说集合A是集合B的真子集,记作A B(或B A)?B,且A?②真子集:如果A

  C?C ,那么 A?B, B?③如果 A

  A 那么A=B?B 同时 B?④ 如果A

  3. 不含任何元素的集合叫做空集,记为Φ

  规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  集合的运算

  1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.

  记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.

  2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.

  3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

  4、全集与补集

  (1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

  A}?S且 x? x?记作: CSA 即 CSA ={x

  (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

  (3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

高一数学知识点总结7

  集合具有某种特定性质的事物的总体。这里的事物可以是人,物品,也可以是数学元素。

  例如:

  1、分散的人或事物聚集到一起;使聚集:紧急~。

  2、数学名词。一组具有某种共同性质的数学元素:有理数的~。

  3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G、F、P、,1845年1918年,德国数学家先驱,是集合论的,目前集合论的基本思想已经渗透到现代数学的所有领域。

  集合,在数学上是一个基础概念。

  什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下定义。

  集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。

  集合与集合之间的关系

  某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。

  (说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作AB。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作AB。中学教材课本里将符号下加了一个符号,不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。)

高一数学知识点总结8

  1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

  解析式

  顶点坐标

  对称轴

  y=ax^2

  (0,0)

  x=0

  y=a(x-h)^2

  (h,0)

  x=h

  y=a(x-h)^2+k

  (h,k)

  x=h

  y=ax^2+bx+c

  (-b/2a,[4ac-b^2]/4a)

  x=-b/2a

  当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

  当h<0时,则向左平行移动|h|个单位得到.

  当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

  当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

  2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

  3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.

  4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的两根.这两点间的距离AB=|x?-x?|

  当△=0.图象与x轴只有一个交点;

  当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

  5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

  6.用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

  y=ax^2+bx+c(a≠0).

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

高一数学知识点总结9

  高一数学集合有关概念

  集合的含义

  集合的中元素的三个特性:

  元素的确定性如:世界上的山

  元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

  元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

  3。集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  集合的表示方法:列举法与描述法。

  注意:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集N_N+整数集Z有理数集Q实数集R

  列举法:{a,b,c……}

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x(R|x—3>2},{x|x—3>2}

  语言描述法:例:{不是直角三角形的三角形}

  Venn图:

  4、集合的分类:

  有限集含有有限个元素的集合

  无限集含有无限个元素的集合

  空集不含任何元素的集合例:{x|x2=—5}

高一数学知识点总结10

  一、直线与方程

  (1)直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180

  (2)直线的斜率

  ①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。

  ②过两点的直线的斜率公式:

  注意下面四点:

  (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90

  (2)k与P1、P2的顺序无关;

  (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

  (3)直线方程

  ①点斜式:直线斜率k,且过点

  注意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

  ②斜截式:,直线斜率为k,直线在y轴上的截距为b

  ③两点式:()直线两点,

  ④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

  ⑤一般式:(A,B不全为0)

  ⑤一般式:(A,B不全为0)

  注意:○1各式的适用范围

  ○2特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

  (4)直线系方程:即具有某一共同性质的直线

  (一)平行直线系

  平行于已知直线(是不全为0的常数)的直线系:(C为常数)

  (二)过定点的直线系

  (ⅰ)斜率为k的直线系:直线过定点;

  (ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。

  (5)两直线平行与垂直;

  注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

  (6)两条直线的交点

  相交:交点坐标即方程组的一组解。方程组无解;方程组有无数解与重合

  (7)两点间距离公式:设是平面直角坐标系中的两个点,则

  (8)点到直线距离公式:一点到直线的距离

  (9)两平行直线距离公式:在任一直线上任取一点,再转化为点到直线的距离进行求解。

高一数学知识点总结11

  一、集合有关概念

  1. 集合的含义

  2. 集合的中元素的三个特性:

  (1) 元素的确定性,

  (2) 元素的互异性,

  (3) 元素的无序性,

  3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  (1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  (2) 集合的表示方法:列举法与描述法。

  ? 注意:常用数集及其记法:

  非负整数集(即自然数集) 记作:N

  正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

  1) 列举法:{a,b,c……}

  2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

  3) 语言描述法:例:{不是直角三角形的三角形}

  4) Venn图:

  4、集合的分类:

  (1) 有限集 含有有限个元素的集合

  (2) 无限集 含有无限个元素的集合

  (3) 空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合间的基本关系

  1.“包含”关系—子集

  注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

  2.“相等”关系:A=B (5≥5,且5≤5,则5=5)

  实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”

  即:① 任何一个集合是它本身的子集。A?A

  ②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)

  ③如果 A?B, B?C ,那么 A?C

  ④ 如果A?B 同时 B?A 那么A=B

  3. 不含任何元素的集合叫做空集,记为Φ

  规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  ? 有n个元素的集合,含有2n个子集,2n-1个真子集

  三、集合的运算

  运算类型 交 集 并 集 补 集

  定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.

  由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).

  设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

  二、函数的有关概念

  1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

  注意:

  1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

  求函数的定义域时列不等式组的主要依据是:

  (1)分式的分母不等于零;

  (2)偶次方根的被开方数不小于零;

  (3)对数式的真数必须大于零;

  (4)指数、对数式的底必须大于零且不等于1.

  (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

  (6)指数为零底不可以等于零,

  (7)实际问题中的函数的定义域还要保证实际问题有意义.

  相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)

  2.值域 : 先考虑其定义域

  (1)观察法

  (2)配方法

  (3)代换法

  3. 函数图象知识归纳

  (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .

  (2) 画法

  A、 描点法:

  B、 图象变换法

  常用变换方法有三种

  1) 平移变换

  2) 伸缩变换

  3) 对称变换

  4.区间的概念

  (1)区间的分类:开区间、闭区间、半开半闭区间

  (2)无穷区间

  (3)区间的数轴表示.

  5.映射

  一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作f:A→B

  6.分段函数

  (1)在定义域的不同部分上有不同的解析表达式的函数。

  (2)各部分的自变量的取值情况.

  (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

  补充:复合函数

  如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。

  二.函数的性质

  1.函数的单调性(局部性质)

  (1)增函数

  设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

  如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

  注意:函数的单调性是函数的局部性质;

  (2) 图象的特点

  如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

  (3).函数单调区间与单调性的判定方法

  (A) 定义法:

  ○1 任取x1,x2∈D,且x1

  ○2 作差f(x1)-f(x2);

  ○3 变形(通常是因式分解和配方);

  ○4 定号(即判断差f(x1)-f(x2)的正负);

  ○5 下结论(指出函数f(x)在给定的区间D上的单调性).

  (B)图象法(从图象上看升降)

  (C)复合函数的单调性

  复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

  注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.

  8.函数的奇偶性(整体性质)

  (1)偶函数

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

  (2).奇函数

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

  (3)具有奇偶性的函数的图象的特征

  偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

  利用定义判断函数奇偶性的步骤:

  ○1首先确定函数的定义域,并判断其是否关于原点对称;

  ○2确定f(-x)与f(x)的关系;

  ○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

  (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;

  (3)利用定理,或借助函数的图象判定 .

  9、函数的解析表达式

  (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

  (2)求函数的解析式的主要方法有:

  1) 凑配法

  2) 待定系数法

  3) 换元法

  4) 消参法

  10.函数最大(小)值(定义见课本p36页)

  ○1 利用二次函数的性质(配方法)求函数的最大(小)值

  ○2 利用图象求函数的最大(小)值

  ○3 利用函数单调性的判断函数的最大(小)值:

  如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

  如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

高一数学知识点总结12

  知识点1

  一、集合有关概念

  1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

  2、集合的中元素的三个特性:

  1、元素的确定性;

  2、元素的互异性;

  3、元素的无序性

  说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

  (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

  (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

  (4)集合元素的三个特性使集合本身具有了确定性和整体性。

  3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  1、用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  2、集合的表示方法:列举法与描述法。

  注意啊:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集N或N+整数集Z有理数集Q实数集R

  关于“属于”的概念

  集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A

  列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

  ①语言描述法:例:{不是直角三角形的三角形}

  ②数学式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

  4、集合的分类:

  1、有限集含有有限个元素的集合

  2、无限集含有无限个元素的集合

  3、空集不含任何元素的集合例:{x|x2=—5}

  知识点2

  I、定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大、)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II、二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x—h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(x—x?)(x—x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a

  III、二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

  IV、抛物线的性质

  1、抛物线是轴对称图形。对称轴为直线x=—b/2a。对称轴与抛物线的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2、抛物线有一个顶点P,坐标为

  P(—b/2a,(4ac—b^2)/4a)

  当—b/2a=0时,P在y轴上;当Δ=b^2—4ac=0时,P在x轴上。

  3、二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  知识点3

  1、抛物线是轴对称图形。对称轴为直线

  x=—b/2a。

  对称轴与抛物线的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2、抛物线有一个顶点P,坐标为

  P(—b/2a,(4ac—b’2)/4a)

  当—b/2a=0时,P在y轴上;当Δ=b’2—4ac=0时,P在x轴上。

  3、二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4、一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5、常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6、抛物线与x轴交点个数

  Δ=b’2—4ac>0时,抛物线与x轴有2个交点。

  Δ=b’2—4ac=0时,抛物线与x轴有1个交点。

  Δ=b’2—4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=—b±√b’2—4ac的值的相反数,乘上虚数i,整个式子除以2a)

  知识点4

  对数函数

  对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

  右图给出对于不同大小a所表示的函数图形:

  可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

  (1)对数函数的定义域为大于0的实数集合。

  (2)对数函数的值域为全部实数集合。

  (3)函数总是通过(1,0)这点。

  (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

  (5)显然对数函数。

  知识点5

  方程的根与函数的零点

  1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

  2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点。

  3、函数零点的求法:

  (1)(代数法)求方程的实数根;

  (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。

  4、二次函数的零点:

  (1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。

  (2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

  (3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。

高一数学知识点总结13

  一:函数模型及其应用

  本节主要包括函数的模型、函数的应用等知识点。主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。

  1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。

  2、用函数解应用题的基本步骤是:

  (1)阅读并且理解题意。(关键是数据、字母的实际意义);

  (2)设量建模;

  (3)求解函数模型;

  (4)简要回答实际问题。

  常见考法:

  本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。

  误区提醒:

  1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。

  2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。

  【典型例题】

  例1:

  (1)某种储蓄的月利率是0。36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和(不计复利)。

  (2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式。如果存入本金1000元,每期利率2。25%,试计算5期后的本利和是多少?解:(1)利息=本金×月利率×月数。y=100+100×0。36%·x=100+0。36x,当x=5时,y=101。8,∴5个月后的本息和为101。8元。

  例2:

  某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)

  (1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式。

  (2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能是企业获得利润,其利润约为多少万元。(精确到1万元)。

高一数学知识点总结14

  定义:

  从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。

  表达式:

  斜截式:y=kx+b

  两点式:(y-y1)/(y1-y2)=(x-x1)/(x1-x2)

  点斜式:y-y1=k(x-x1)

  截距式:(x/a)+(y/b)=0

  补充一下:最基本的标准方程不要忘了,AX+BY+C=0,

  因为,上面的四种直线方程不包含斜率K不存在的情况,如x=3,这条直线就不能用上面的四种形式表示,解题过程中尤其要注意,K不存在的情况。

高一数学知识点总结15

  函数图象知识归纳

  (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

  (2)画法

  A、描点法:

  B、图象变换法

  常用变换方法有三种

  1)平移变换

  2)伸缩变换

  3)对称变换

  4.高中数学函数区间的概念

  (1)函数区间的分类:开区间、闭区间、半开半闭区间

  (2)无穷区间

  5.映射

  一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)”

  对于映射f:A→B来说,则应满足:

  (1)函数A中的每一个元素,在函数B中都有象,并且象是的;

  (2)函数A中不同的元素,在函数B中对应的象可以是同一个;

  (3)不要求函数B中的每一个元素在函数A中都有原象。

  6.高中数学函数之分段函数

  (1)在定义域的不同部分上有不同的解析表达式的函数。

  (2)各部分的自变量的取值情况.

  (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

  补充:复合函数

  如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

【高一数学知识点总结通用15篇】相关文章:

1.高一数学知识点总结

2.高一数学必修一知识点总结

3.高一政治知识点总结

4.高一物理知识点总结

5.高一历史知识点总结

6.高考数学知识点总结

7.高一政治必修一知识点总结

8.高一物理必修一知识点总结

9.高一生物知识点总结